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ABSTRACT
Stencil computations represent a very common class of nested loops
in scientific and engineering applications. Exploiting vector units
in modern CPUs is crucial to achieving peak performance. Previous
vectorization approaches often consider the data space, in particular
the innermost unit-strided loop. It leads to the well-known data
alignment conflict problem that vector loads are overlapped due to
the data sharing between continuous stencil computations. This
paper proposes a novel temporal vectorization scheme for stencils.
It vectorizes the stencil computation in the iteration space and
assembles points with different time coordinates in one vector. The
temporal vectorization leads to a small fixed number of vector
reorganizations that is irrelevant to the vector length, stencil order,
and dimension. Furthermore, it is also applicable to Gauss-Seidel
stencils, whose vectorization is not well-studied. The effectiveness
of the temporal vectorization is demonstrated by various Jacobi
and Gauss-Seidel stencils.
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1 INTRODUCTION
The stencil computation is identified as one of the thirteen Berkeley
motifs and represents a very common class of nested loops in sci-
entific and engineering applications, dynamic programming, and
image processing algorithms. A stencil is a pre-defined pattern of
neighbor points used for updating a given point. The stencil com-
putation involves time-iterated updates on a regular 𝑑-dimensional
grid, called the data space or spatial space. The data space is updated
along the time dimension, generating a (𝑑 + 1)-dimensional space
referred to as the iteration space. The stencils can be classified from
various perspectives, such as the grid dimensions (1D, 2D, ...), orders
(number of neighbors, 3-point, 5-point, ...), shapes (box, star, ...),
dependence types (Gauss-Seidel, Jacobi) and boundary conditions
(constant, periodic, ...).

The naive implementation of a 𝑑-dimensional stencil is com-
prised of (𝑑 + 1) loops where the outermost loop traverses the
time dimension and the inner loops update all grid points in the
𝑑-dimensional spatial space. It exhibits poor data reuse and is a typ-
ical bandwidth-bound kernel. To improve performance, blocking
and vectorization are the two most powerful and commonly used
transformation techniques.

There are two kinds of blocking methods for stencil computa-
tions: spatial blocking and temporal blocking. The spatial blocking
algorithms promote data reuse in a single time step for 2D and
higher dimension stencils by adjusting the data traversal pattern
to an optimized order. An in-cache grid point may be reused to
update all its neighbors before evicted from the cache. However,
the locality exploited by space blocking is limited by the neighbor
pattern size of a stencil. The temporal tiling [11, 29, 30, 34, 37, 52]
takes the time dimension and spatial dimensions into consideration
simultaneously. It has been exhaustively studied for stencils to fur-
ther improve the data locality and alleviate the memory bandwidth
demands.

The vectorization groups a set of data in a vector register and
processes them in parallel to utilize vector units in modern CPU
architectures. It exploits the data parallelism and serves to boost
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the in-core performance. There has been a long history of efforts to
design efficient vectorization methods [1, 15, 21, 25, 28, 32, 40, 54].
Though the stencil computation is characterized by its apparently
low arithmetic intensity, the vectorization is still profitable, espe-
cially for blocked stencil algorithms. Prior vectorization techniques
for stencils focus on the data space, i.e. group points either in the
unit-strided space dimension [16] or multiple space dimensions
[50]. We refer to this scheme as spatial vectorization.

One well-known problem induced by the spatial vectorization
of stencils is the data alignment conflict. It arises from the fact
that continuous vectors require that the same value appears at
different positions of vectors. Thus it incurs either redundant loads
or additional data organization operations. Existing solutions [8, 16]
reduce these overheads but still limit the performance or hurt the
data locality. We will provide a detailed analysis in Section 2.

Furthermore, vectorization and blocking are often regarded as
two orthogonal methods. However, the vectorization and tiling
actually interact with each other for stencil computations. The
vectorization often requires higher bandwidth and prefers loading
data from the first-level cache. On the contrary, the tiling tries to
minimize the data transfer at the memory-cache level and prefers
the last-level cache. This performance gap motivates our work and
will be discussed in Section 3.1.

In this paper, we propose a novel temporal vectorization scheme
considering the entire iteration space. It expands the target scope of
vectorization from the spatial space to the iteration space. A vector
in the temporal vectorization scheme groups points with different
time coordinates. It seeks to alleviate the data alignment conflict
and bridges the above-mentioned performance gap. We also design
a set of optimizations to alleviate weaknesses induced by the new
scheme and adjust the data layout to explore its potential.

The temporal vectorization still requires data reorganization op-
erations, but the overhead is fixed and smaller than previous meth-
ods. Furthermore, a vectorization scheme usually only affects the
single-core performance. However, the proposed temporal vector-
ization method leads to better utilization of the memory bandwidth.
In particular, it loads the data at a slower frequency. Thus it can ex-
pect less memory contention, especially for multi-core executions.
We implemented the temporal vectorization with temporal blocking
schemes and show that the speedup increases with the number of
cores, especially for high-dimensional stencils. Finally, the temporal
vectorization scheme is also applicable to the Gauss-Seidel stencils.
Gauss-Seidel stencils update a point using the newest values of
neighbor points. It is illegal to vectorize any single loop of the naive
implementation code. To the best of our knowledge, we are not
aware of vectorization methods for Gauss-Seidel stencils.

The remainder of this paper is organized as follows. Section 2
provides the background. The temporal vectorization is described in
Section 3. We present the performance results in Section 4. Section
5 overviews related work and Section 6 concludes the paper.

2 BACKGROUND
2.1 Data Alignment Conflict of Vectorization
We take the 1D3P stencil as an example to illustrate the fundamental
problem of the stencil computations caused by vectorization. The
pseudo-code is listed in Algorithm 1. 𝑎𝑡𝑥 represents the value at the

Algorithm 1: 1D3P Jacobi Stencil, scalar code
1 for ( 𝑡 = 0; 𝑡 < 𝑇 ; 𝑡 = 𝑡 + 1 ) {
2 for ( 𝑥 = 1; 𝑥 <= 𝑁𝑋 ; 𝑥 = 𝑥 + 1 ) {
3 𝑎

𝑡+1
𝑥 ←Stencil(𝑎𝑡𝑥−1, 𝑎𝑡𝑥 , 𝑎𝑡𝑥+1);

4 }

5 }

point (𝑡, 𝑥) in the iteration space where 𝑥 and 𝑡 are the coordinates
in the time and space dimension, respectively. In each iteration
of the inner space loop, it loads 𝑎𝑡𝑥+1, reuses in-register data 𝑎𝑡𝑥−1
and 𝑎𝑡𝑥 referenced by the previous calculation and writes the result
𝑎
𝑡+1
𝑥 to memory. Observing the CPU-memory data transfer, one
iteration of the inner loop is exactly similar to a common array
copy algorithm.

The vectorization groups a set of data in a vector register and
processes them in parallel. The naive vectorization of the 1D3P sten-
cil code computes contiguous elements in the output array 𝑎𝑡+1𝑥 . We
assume the vector register holds 4 elements (i.e. vector length 𝑣𝑙 = 4)
in the rest of this paper. Thus the vectorized code performs the cal-
culation with vector operations and outputs (𝑎𝑡+11 , 𝑎

𝑡+1
2 , 𝑎

𝑡+1
3 , 𝑎

𝑡+1
4 )

using one vector register.
A well-known problem incurred by the vectorization of stencil

codes is the input data alignment conflicts. For example, to compute
(𝑎

𝑡+1
1 , 𝑎

𝑡+1
2 , 𝑎

𝑡+1
3 , 𝑎

𝑡+1
4 ), it requires three vectors: (𝑎

𝑡
0, 𝑎

𝑡
1, 𝑎

𝑡
2, 𝑎

𝑡
3), (𝑎

𝑡
1,

𝑎
𝑡
2, 𝑎

𝑡
3, 𝑎

𝑡
4) and (𝑎

𝑡
2, 𝑎

𝑡
3, 𝑎

𝑡
4, 𝑎

𝑡
5). The element 𝑎𝑡2 appears in all these

vector registers but at different positions.
The fundamental reason for the data alignment conflict is the

data sharing between continuous calculations, e.g., 𝑎1𝑥 and 𝑎1𝑥+1
depend on same points 𝑎0𝑥 and 𝑎0𝑥+1. We refer to this as the read-
read dependence. Conventionally the read-read dependence is not a
data hazard as other data dependencies including read-after-write,
write-after-read, and write-after-write dependencies. Furthermore,
common read-read dependence is usually exploited to promote data
locality. However, for vectorized stencil codes, the data alignment
conflict arises from the fact that components in one output vector
or at the different positions of multiple output vectors have intra-
vector or inter-vector read-read dependencies. Then the required
data must redundantly appear in many vectors.

2.2 Existing methods
We present three existing solutions to the data alignment problem
and discuss their drawbacks.

Multiple load vectorization. The common vectorization employed
by production compilers loads all the needed vectors from mem-
ory straightforwardly as shown in Algorithm 2. Due to the low
operational intensity, the stencil computation is often regarded
as a memory-starved application. Compared with the scalar code,
this multiple load vectorization method further increases the data
transfer volume. Moreover, in each iteration of this code, it has at
least two unaligned memory references where the first data address
is not at a 32-byte boundary. Since CPU implementations favor
aligned data loads and stores, these unaligned memory references
will degrade the performance considerably.
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Algorithm 2: 1D3P Jacobi Stencil, multi-load code
1 for ( 𝑡 = 0; 𝑡 < 𝑇 ; 𝑡 = 𝑡 + 1 ) {
2 for ( 𝑥 = 1; 𝑥 <= 𝑁𝑋 − 3; 𝑥 = 𝑥 + 4 ) {
3 𝑣0 ← (𝑎

𝑡
𝑥−1, 𝑎𝑡𝑥 , 𝑎𝑡𝑥+1, 𝑎𝑡𝑥+2);

4 𝑣1 ← (𝑎
𝑡
𝑥 , 𝑎

𝑡
𝑥+1, 𝑎𝑡𝑥+2, 𝑎𝑡𝑥+3);

5 𝑣2 ← (𝑎
𝑡
𝑥+1, 𝑎𝑡𝑥+2, 𝑎𝑡𝑥+3, 𝑎𝑡𝑥+4);

6 (𝑎
𝑡+1
𝑥 , 𝑎

𝑡+1
𝑥+1, 𝑎𝑡+1𝑥+2, 𝑎𝑡+1𝑥+3)←Stencil(𝑣0, 𝑣1, 𝑣2);

7 }

8 }

Data reorganization vectorization. Another solution [8, 55] is sim-
ilar to the scalar code in terms of the CPU-memory data transfer.
It loads each input element to vector register only once and as-
sembles the required vectors via inter-register data permutations
instructions. Compared with the multiple load method, this data
permutations method reduces the memory bandwidth usage and
takes the advantage of the rich set of data-reordering instructions
supported by most SIMD architectures. However, the execution unit
for data permutations inside the CPU may become the bottleneck.

A common disadvantage of these two approaches is that the
number of redundant data loads or reorganization operations in-
creases with the order of a stencil, the length of the CPU vector
register and the dimensionality of the problem. For example, to
compute the vector (𝑎11, 𝑎

1
2, 𝑎

1
3, 𝑎

1
4) of the 1D5P stencil, it needs to

put 𝑎03 in four vectors at all different positions to update 𝑎11, 𝑎
1
2, 𝑎

1
3

and 𝑎14. Thus the redundancy is proportional to the order of a stencil
and at most 𝑣𝑙 − 1. For the 2D9P stencil, the innermost loop incurs
two redundant loads and the outer space loop incurs another four.

Dimension-Lifting Transpose (DLT). One milestone approach to
address the data alignment conflict is the DLT method [16]. It turns
to put the points with read-read dependencies in the same position
of different vectors. Specifically, the original one-dimensional ar-
ray of length 𝑁 is viewed as a matrix of size 𝑣𝑙 ∗ (𝑁 ⇑𝑣𝑙). It then
performs a matrix transpose. Consider the DLT method for a one-
dimensional array of 28 elements. The second 𝑣𝑙 = 4 elements in
the transformed layout are contiguous stored and loaded into one
output vector (𝑎11, 𝑎

1
8, 𝑎

1
15, 𝑎

1
22). All the three required input vectors:

(𝑎
0
0, 𝑎

0
7, 𝑎

0
14, 𝑎

0
21), (𝑎

0
1, 𝑎

0
8, 𝑎

0
15, 𝑎

0
22) and (𝑎

0
2, 𝑎

0
9, 𝑎

0
16, 𝑎

0
23) are free of

data sharing and also stored contiguously in memory. DLT only
needs to assemble input vectors for calculating output vectors at
boundaries.

DLT has the following disadvantages. First, DLT can be viewed
as 𝑣𝑙 independent stencils if we ignore the boundary processing.
Therefore when incorporated with blocking frameworks, the data
reuse decreases 𝑣𝑙 times. The reason is that there is no data reuse
among the 𝑣𝑙 independent stencils. Second, DLT suffers from the
overhead of explicit transpose operations executed before and after
the stencil computation. For 1D and 2D stencils in scientific appli-
cations, the number of time loops is often large enough to amortize
the transpose overhead. But for 3D stencils and low-dimensional
stencils in other applications like image processing, the time size
is often too small to amortize the overhead. Third, it’s hard to im-
plement the DLT transpose in-place and it often chooses to use
an additional array to store the transposed data. This increases

the space complexity of the code. Finally, DLT fails to apply to
Gauss-Seidel stencils.

3 TEMPORAL VECTORIZATION
3.1 Motivation
Our work is motivated by two observations on the data transfers
between the CPU and cache, and between the cache and memory.

First, the vectorized codes often achieve higher performance
than scalar codes. Furthermore, the data alignment conflict induced
by vectorization requires either more data transfers or data reor-
ganization operations. Consequently, the vectorization increases
the bandwidth demands. As will be demonstrated in the Evaluation
section, all sequential non-blocking stencil implementations with
existing vectorization techniques achieve the highest performance
when the problem sizes fit in the L1 cache and the performance
decreases fast as the problem size increases. Since the L2 cache
provides competitive bandwidth compared with the L1 cache, it
implies that existing vectorization schemes are relatively cache-
bandwidth-sensitive.

Second, L1 cache sizes in modern CPUs are often small. The
typical size is around 32 KB. It holds up to 4000 elements for a
double-precision floating-point kernel. Thus for higher dimension
stencils, the space blocking sizes and the corresponding temporal
blocking size are limited, which will lead to a high memory transfer
volume. As will be demonstrated in the Evaluation section, the par-
allel blocking stencil implementations with existing vectorization
techniques often get the best performance when the block fits in L1
cache or L2 cache for one-dimensional or high-dimensional sten-
cils. This demonstrates the memory-bandwidth-bound restriction
should be first satisfied even it incurs a slower in-core performance
for L2 cache. This indicates that the blocking scheme is cache-size-
sensitive especially for high dimension stencils.

These two observations illustrate the trade-off between the data
locality exploitation at cache-memory level and the in-core perfor-
mance of the vectorized codes at the CPU-cache level. The conven-
tional innermost loop vectorization leads to the best data reuse at
the memory-cache level while incurs redundant CPU-cache data
transfers.

The DLT generates an optimal in-core data access pattern while
hurting the data locality in the cache. The sequential DLT results
[16] exhibit performance improvements for all stencils when the
data fit in caches. However, the DLT with a blocking scheme [17]
derives considerable speedups for 1D stencils but only competitive
or even worse performance for high-dimensional stencils. This
implies that the degradation of data locality outweights the benefits
of the vectorization for the DLT. We seek to design a vectorization
scheme that maintains the data reuse ability and incurs lightweight
in-core data reorganizations simultaneously.

3.2 One-dimensional Stencil
The key idea is to extend the vectorization scope from the data space
to the iteration space. Specifically, data points with different time
coordinates are assembled in one vector. We take the 1D3P stencil
as an example. The general form of a vector in our scheme for a
one-dimensional stencil is (𝑎𝑡3𝑥3 , 𝑎

𝑡2
𝑥2 , 𝑎

𝑡1
𝑥1 , 𝑎

𝑡0
𝑥0). For the stencil kernels

used in the temporal vectorization, we always set 𝑡𝑖+1 − 𝑡𝑖 = 1. The
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space stride 𝑠 = 𝑥𝑖 − 𝑥𝑖+1 is determined by the stencil. Note that
it becomes the common vectorization in the multi-load and data
reorganization approaches when 𝑡𝑖+1 = 𝑡𝑖 and 𝑠 = 1, and DLT when
𝑡𝑖+1 = 𝑡𝑖 and 𝑠 = 𝑁𝑋⇑4.

To perform the stencil computation with a vector, it only requires
that the elements in the vector are free of dependence. This is
equivalent to respecting the dependence defined by a stencil. Let
the dependence set of a stencil be 𝐷 . Each dependence (𝑑𝑡,𝑑𝑥) ∈
𝐷 implies that there exists two points (𝑡 ′, 𝑥 ′) and (𝑡 ′′, 𝑥 ′′) with
𝑡
′′
− 𝑡
′
= 𝑑𝑡 and 𝑥 ′′ − 𝑥 ′ = 𝑑𝑥 in the iteration space that 𝑎𝑡

′′

𝑥 ′′

depends on 𝑎𝑡
′

𝑥 ′ . It is easy to show that the temporal vectorization is
legal when 𝑠 > max{𝑑𝑥⇑𝑑𝑡 ⋃︀(𝑑𝑡,𝑑𝑥) ∈ 𝐷,𝑑𝑥 > 0}. We only consider
dependencies with 𝑑𝑥 > 0 since the innermost loop traverses the
space dimension in increasing order. Take the 1D3P Jacobi stencil
as an example, the dependencies are (1, 0), (1, 1) and (1,−1). Thus
it is sufficient to make the temporal vectorization legal by setting
𝑠 > 1.

Algorithm 3 shows the pseudo-code of the temporal vectorization
of the 1D3P Jacobi stencil with the space stride 𝑠 = 2. Figure 1
illustrates the Algorithm. The outer-loop (Line 1) iteratively sweeps
a time tile of the height equivalent to the vector length (𝑣𝑙 = 4), i.e.
each iteration forwards all grid points from time coordinate 𝑡 to
𝑡 + 4. Thus we can ignore 𝑡 in the rest of the paper and only focus
on the first iteration (𝑡 = 0) of the outer-loop.

In each iteration of the outer loop, Lines 2-4 update a small set
of grid points at time 𝑡 + 1, 𝑡 + 2 and 𝑡 + 3 (the iteration points
surrounded by the blue staircase-like dashed line in Figure 1). Lines
5-7 collect some of these pre-computed values into vectors 𝑣0, 𝑣1, 𝑣2
for the first vectorized stencil computation. Figure 1 shows these
vectors with different colors ( blue, green and orange). These vectors
are called input vectors since they are fed to the vectorized stencil
computing. Line 12 performs the calculations and generates an
output vector 𝑣3 (colored red in Figure 1).

As illustrated in Figure 1, the temporal vectorization requires the
data reorganization of the output vector 𝑣3 = (𝑎4𝑥 , 𝑎3𝑥+𝑠 , 𝑎2𝑥+2𝑠 , 𝑎1𝑥+3𝑠)
to assemble an input vector (𝑎3𝑥+𝑠 , 𝑎2𝑥+2𝑠 , 𝑎1𝑥+3𝑠 , 𝑎0𝑥+4𝑠) used in sub-
sequent computations. It needs to rotate the output vector, copy
out 𝑎4𝑥 and copy in 𝑎0𝑥+4𝑠 . In modern CPU architectures, the vector
register is split into some 128-bit lanes (two components per lane in
our example). Data movements inside lanes incur a lower latency,
typical 1 cycle versus 3 for lane-crossing instructions. Since the
rotation of the output vector requires a lane-crossing one, we try
to implement all other data organizations with in-lane ones.

The component 𝑎4∗ at the highest position of the output vector is
the actual output value of the innermost loop and must be stored in
memory since the next iteration of the outer time loop only requires
the values with the time coordinate 4. To reduce the memory write
instructions, the elements 𝑎4∗ of the output vectors in every four
continuous iterations of the innermost loop are assembled in one
top vector 𝑣𝑡𝑜𝑝 = (𝑎4𝑥+3, 𝑎4𝑥+2, 𝑎4𝑥+1, 𝑎4𝑥) (Line 15) and written to
memory with a single vector-storing instruction (Line 18).

The following list shows the 𝑀𝑒𝑟𝑔𝑒𝑇𝑜𝑝 operations in four itera-
tions 𝑥 = 1, 2, 3, 4. The first vector in each row is the output vector of
each corresponding iteration and in each vector we only show the
value with the time coordinate 4. The first two output vectors are
rotated firstly since their values of time coordinate 4 will be moved

Algorithm 3: 1D3P Jacobi Stencil, temporal vectorization
code with 𝑠 = 2, 𝑣𝑙 = 4 and 𝑇%4 = 0
1 for ( 𝑡 = 0; 𝑡 < 𝑇 ; 𝑡 = 𝑡 + 4 ) {
2 Compute{𝑎𝑡+11 , . . . , 𝑎

𝑡+1
2+2𝑠 };

3 Compute{𝑎𝑡+21 , . . . , 𝑎
𝑡+2
2+𝑠 };

4 Compute{𝑎𝑡+31 , . . . , 𝑎
𝑡+3
2 };

5 𝑣0 ← (𝑎
𝑡+3
0 , 𝑎

𝑡+2
𝑠 , 𝑎

𝑡+1
2𝑠 , 𝑎

𝑡
3𝑠);

6 𝑣1 ← (𝑎
𝑡+3
1 , 𝑎

𝑡+2
1+𝑠 , 𝑎𝑡+11+2𝑠 , 𝑎𝑡1+3𝑠);

7 𝑣2 ← (𝑎
𝑡+3
2 , 𝑎

𝑡+2
2+𝑠 , 𝑎𝑡+12+2𝑠 , 𝑎𝑡2+3𝑠);

8 for ( 𝑥 = 1; 𝑥 <= 𝑁𝑋 + 1 − 4𝑠; 𝑥 = 𝑥 + 1 ) {
9 if (1 == 𝑥%4) then

10 𝑣𝑑𝑜𝑤𝑛 ← (𝑎
𝑡
𝑥+4𝑠+3, 𝑎𝑡𝑥+4𝑠+2, 𝑎𝑡𝑥+4𝑠+1, 𝑎𝑡𝑥+4𝑠);

11 end
12 𝑣3 ←Stencil(𝑣0, 𝑣1, 𝑣2); // 𝑣3 = (𝑎

𝑡+4
𝑥 , 𝑎

𝑡+3
𝑥+𝑠 , 𝑎𝑡+2𝑥+2𝑠 , 𝑎𝑡+1𝑥+3𝑠)

13 𝑣0 ←𝑣1;
14 𝑣1 ←𝑣2;
15 𝑣𝑡𝑜𝑝 ←MergeTop(𝑣3, 𝑣𝑡𝑜𝑝 , (𝑥 − 1)%4);
16 𝑣2 ←MergeDown(𝑣3,𝑣𝑑𝑜𝑤𝑛, (𝑥 − 1)%4);
17 if (0 == 𝑥%4) then
18 (𝑎

𝑡+4
𝑥+3, 𝑎𝑡+4𝑥+2, 𝑎𝑡+4𝑥+1, 𝑎𝑡+4𝑥 )← 𝑣𝑡𝑜𝑝 ;

19 end
20 }

21 (𝑎
𝑡+3
𝑁𝑋−3𝑠−1, 𝑎

𝑡+2
𝑁𝑋−2𝑠−1, 𝑎

𝑡+1
𝑁𝑋−𝑠−1, 𝑎

𝑡
𝑁𝑋−1)← 𝑣0;

22 (𝑎
𝑡+3
𝑁𝑋−3𝑠+0, 𝑎

𝑡+2
𝑁𝑋−2𝑠+0, 𝑎

𝑡+1
𝑁𝑋−𝑠+0, 𝑎

𝑡
𝑁𝑋+0)← 𝑣1;

23 (𝑎
𝑡+3
𝑁𝑋−3𝑠+1, 𝑎

𝑡+2
𝑁𝑋−2𝑠+1, 𝑎

𝑡+1
𝑁𝑋−𝑠+1, 𝑎

𝑡
𝑁𝑋+1)← 𝑣2;

24 Compute{𝑎𝑡+1𝑁𝑋 };
25 Compute{𝑎𝑡+2𝑁𝑋−𝑠 , . . . , 𝑎

𝑡+2
𝑁𝑋 };

26 Compute{𝑎𝑡+3𝑁𝑋−2𝑠 , . . . , 𝑎
𝑡+3
𝑁𝑋 };

27 Compute{𝑎𝑡+4𝑁𝑋−3𝑠 , . . . , 𝑎
𝑡+4
𝑁𝑋 };

28 }

to the two lower positions in 𝑣𝑡𝑜𝑝 . The first value 𝑎41 is directly
copied to the empty 𝑣𝑡𝑜𝑝 while the second vaule 𝑎42 is shuffled with
𝑣𝑡𝑜𝑝 . The other two output values 𝑎43 and 𝑎

4
4 are blended to the two

higher positions of 𝑣𝑡𝑜𝑝 before rotating their corresponding output
vectors. Note that there is a shuffle operation to the top vector in
the iteration 𝑥 = 3 to empty the highest component which will
be filled in the last iteration with 𝑎44. In sum, it needs 2, 1 and 4
data reorganization instructions for the rotation of output vector
(lane-crossing), shuffle of top vector (in-lane), and combination of
output and top vectors (in-lane), respectively.
𝑥 = 1 ∶ (𝑎41,∗,∗,∗) 𝑟𝑜𝑡𝑎𝑡𝑒 (∗,∗,∗, 𝑎41) 𝑐𝑜𝑝𝑦 (∗,∗,∗, 𝑎41) = 𝑣𝑡𝑜𝑝

𝑥 = 2 ∶ (𝑎42,∗,∗,∗) 𝑟𝑜𝑡𝑎𝑡𝑒 (∗,∗,∗, 𝑎42) 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (∗,∗, 𝑎41, 𝑎42) = 𝑣𝑡𝑜𝑝

𝑥 = 3 ∶ (𝑎43,∗,∗,∗) 𝑏𝑙𝑒𝑛𝑑 (𝑎43,∗, 𝑎41, 𝑎42) 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (∗, 𝑎43, 𝑎42, 𝑎41) = 𝑣𝑡𝑜𝑝

𝑥 = 4 ∶ (𝑎44,∗,∗,∗) 𝑏𝑙𝑒𝑛𝑑 (𝑎44, 𝑎43, 𝑎42, 𝑎41) = 𝑣𝑡𝑜𝑝

Similarly, the down vector 𝑣𝑑𝑜𝑤𝑛 = (𝑎
0
𝑥+4𝑠+3, 𝑎0𝑥+4𝑠+2, 𝑎0𝑥+4𝑠+1,

𝑎
0
𝑥+4𝑠) containing four continuous values with time coordinate 0
is loaded from memory by a vector-loading instruction (Line 10). It
is blended with four output vectors calculated in four continuous
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Figure 1: Temporal Vectorization of 1D3P Jacobi Stencil

iterations to generate four corresponding input vectors (Line 16).
This task incurs 2, 2 and 4 data reorganization instructions for the
output vector rotation (lane-crossing), down vector shuffle (in-lane)
and output and down vectors combination (in-lane), respectively.
We omit the details of𝑀𝑒𝑟𝑔𝑒𝐷𝑜𝑤𝑛 as it is similar to𝑀𝑒𝑟𝑔𝑒𝑇𝑜𝑝 .

The numbers of data reorganization operations in every four
output vector computations are listed in the first row of Table 1.
The data reorganization instructions involving the down or top
vectors are in-lane operations that incur small latency. Other in-
structions manipulating the output vectors solely are lane-crossing
instructions. Finally, Line 21-27 process some iteration points that
are not covered by the inner loop.

Efficient data reorganization. To further reduce the data organi-
zation overhead, especially the number of lane-crossing instruc-
tions, our key observation is that only 𝑎4𝑥 and 𝑎2𝑥+2𝑠 in the output
vector are moved across lanes for the corresponding input vector
assembling. Therefore, we turn to copy out the value with the time
coordinate 2 and copy in a new one which is already in the high
lane.

To achieve this, we add another space stride (denoted as 𝑠𝑙) be-
tween lanes of the vector. Specifically, the form of output vectors
becomes (𝑎4𝑥 , 𝑎3𝑥+𝑠 , 𝑎2𝑥+2𝑠+𝑠𝑙 , 𝑎

1
𝑥+3𝑠+𝑠𝑙). To form the corresponding

input vector, both 𝑎4𝑥 and 𝑎2𝑥+2𝑠+𝑠𝑙 are copied out to a top-middle
vector. Then it is blended with a middle-down vector containing
𝑎
2
𝑥+2𝑠 and 𝑎0𝑥+4𝑠+𝑠𝑙 at different lanes to form the corresponding
input vector (𝑎3𝑥+𝑠 , 𝑎2𝑥+2𝑠 , 𝑎1𝑥+3𝑠+𝑠𝑙 , 𝑎

0
𝑥+4𝑠+𝑠𝑙). Thus the number of

data reorganization instructions on the critical path of the input
vector assembling is decreased to 2 and both of them can be im-
plemented with in-lane instructions. In this paper, we always set
𝑠𝑙 = 2 and call this scheme the double-stride optimization and the
previous one the single-stride method.

The following list shows the corresponding 𝑀𝑒𝑟𝑔𝑒𝑇𝑜𝑝 in four
iterations 𝑥 = 1, 2, 3, 4 with the double-stride optimization. The four
output vectors in the left of each row generate two top-middle
vectors (in the gray region) of the form (𝑎4, 𝑎4, 𝑎2, 𝑎2). They can
be combined with a down vector (𝑎0, 𝑎0, 𝑎0, 𝑎0) to produce two
middle-down vectors (𝑣𝑚𝑑1 and 𝑣𝑚𝑑2) of the form (𝑎

2
, 𝑎

2
, 𝑎

0
, 𝑎

0
)

Table 1: Number of Data Organization Operations in Every Four Vector Com-
putations (lane-crossing or in-lane type in brackets)

stride top down output
output
+ down

(middle-down)

output
+ top

(top-middle)
total

single- 1 (in) 2 (in) 4 (cross) 4 (in) 4 (in) 4 (cross) + 11 (in)
double- 1 (cross) 2 (cross) 0 4 (in) 4 (in) 3 (cross) + 8 (in)

for subsequent input vector assembling. Finally, the two top-middle
vectors are merged into a top vector. It takes 3 lane-crossing instruc-
tions to deal with the top and down vectors, and the lane-crossing
instruction is no longer required for the input and output vector
reorganization as in the single-stride assembling. We also omit the
details of𝑀𝑒𝑟𝑔𝑒𝐷𝑜𝑤𝑛 as it is similar to𝑀𝑒𝑟𝑔𝑒𝑇𝑜𝑝 . As summarized
in Table 1, the total number of data reorganization instructions is
reduced to 3 lane-crossing and 8 in-lane instructions for every four
vectorized stencil computations.
𝑥 = 1 ∶ (𝑎41,∗, 𝑎27,∗) 𝑐𝑜𝑝𝑦 (𝑎41,∗, 𝑎27,∗) (𝑎016, 𝑎015, 𝑎014, 𝑎013) = 𝑣𝑑𝑜𝑤𝑛

𝑥 = 2 ∶ (𝑎42,∗, 𝑎28,∗) (𝑎42, 𝑎41, 𝑎28, 𝑎27)𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑎28, 𝑎27, 𝑎014, 𝑎013) = 𝑣𝑚𝑑1

𝑥 = 3 ∶ (𝑎43,∗, 𝑎29,∗) 𝑐𝑜𝑝𝑦 (𝑎43,∗, 𝑎29,∗)

𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑎210, 𝑎29, 𝑎016, 𝑎015) = 𝑣𝑚𝑑2𝑥 = 4 ∶ (𝑎44,∗, 𝑎210,∗) 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑎44, 𝑎43, 𝑎210, 𝑎29)

𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑎44, 𝑎43, 𝑎42, 𝑎41) = 𝑣𝑡𝑜𝑝

Data parallelism improvement. The temporal vectorization also
introduces dependence between input and output vectors in dif-
ferent iterations of the innermost loop. The reason is that there is
data dependence along the time dimension and our vectorization
scheme incorporates that dependence in iterations of the inner-
most space loop. For example, after calculating the output vector
(𝑎

4
1, 𝑎

3
3, 𝑎

2
5, 𝑎

1
7) of the current iteration 𝑥 = 1, the calculation of 𝑎42 in

the output vector (𝑎42, 𝑎
3
4, 𝑎

2
6, 𝑎

1
8) of the next iteration 𝑥 = 2 depends

on 𝑎33. This dependence resembles the common true (read-after-
write) dependence. It limits the number of concurrent instructions
and may extremely impact performance.

One straightforward approach to increasing the number of con-
current computations for the temporal vectorization of one-dimensional
stencils is to widen the space stride 𝑠 . As Figure 1 shows, the number
of input vectors for one-dimensional Jacobi stencils is 𝑠 + 𝑟 where
𝑟 is half of the stencil order. To determine the space stride 𝑠 , one
consideration is about the data reorganization process. Since a top
vector groups the value of time coordinate 4 in every four output
vectors, the number of available input vectors should be dividable
by 4 to simplify the algorithm implementation. Another limitation
to the upper bound of 𝑠 is the number of available vector registers
in the CPU. We conducted the experiments on CPUs with the AVX
extension where the size of the vector register file is 16. Take the
top, down, top-middle, middle-down and coefficients vectors into
consideration, we always set the number of available input vectors
to 8. Thus for 1D stencils, we set 𝑠 = 7.

3.3 High-dimensional Stencil
The temporal vectorization for one-dimensional stencils in effect
performs a strip-mining to the outermost time loop and turns it into
two nested time loops. The outer time loop index is incremented
by the vector length while the inner time loop traverses a time
tile. The temporal vectorization reorders the calculations in the
inner time loop and the space loop. For high-dimensional stencils,
it is illegal to interchange the inner time loop with space loops,
thus it is only allowable to perform the temporal vectorization on
the outermost space loop. Consequently, the pre-computation in
Line 2-4 of Algorithm 3 forwards grid points in several lines for
2D stencils or planes for 3D stencils 1, 2, or 3 time steps. Figure 2
shows a pictorial view of the temporal vectorization of the 2D5P
stencil.
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The data transfer and vectorized computation in Line 9-19 of
Algorithm 3 can be easily extended to higher dimensions. Note that
there are additional space loops inside the𝑥 loop in Line 8. Therefore
the generated input vectors, e.g. (𝑎3𝑥+𝑠,𝑦, 𝑎2𝑥+2𝑠,𝑦, 𝑎1𝑥+3𝑠,𝑦, 𝑎0𝑥+4𝑠,𝑦)
in a 2D stencil must be stored to memory for the next iteration
of outer space loops, e.g. the computations in 𝑥 + 𝑠 − 1, 𝑥 + 𝑠 and
𝑥 + 𝑠 + 1 iterations.

Data layout transpose for high-dimensional stencils. The tempo-
ral vectorization of one-dimensional stencils is able to keep the
input vectors in CPU vector registers. Consequentially there is no
memory transfer for the values with time coordinates 1, 2 and 3
computed in the inner loop. However, as explained above, since
the temporal vectorization targets the outermost space loop of a
high-dimensional stencil, the input vectors must be stored in mem-
ory for subsequent stencil computations. It is desirable to store the
input vector contiguously.

Although the values in one input vector are not adjacent in
the data space, the values with the same time coordinate (at the
same position of these input vectors) are stored contiguously in
memory. For example, in four continuous input vectors (𝑎3𝑥+𝑠,𝑦+𝑖 ,
𝑎
2
𝑥+2𝑠,𝑦+𝑖 , 𝑎1𝑥+3𝑠,𝑦+𝑖 , 𝑎0𝑥+4𝑠,𝑦+𝑖) (𝑖 = 0, 1, 2, 3), the four values with
time coordinate 3, 𝑎3𝑥+𝑠,𝑦+𝑖 logically occupy continuous positions.
These four input vectors can be contiguously stored in these spaces
and therefore can be implemented as a transposed layout. Another
approach is to allocate an extra array of relative small size to store
the input vectors that will be used in subsequent computations.

Initial input vectors loading (final output vectors storing). The
previous optimization improves the storage of the computed in-
put vectors for high-dimensional stencils. The initial input vectors
loading (Lines 2-4 in Algorithm 3) and final input vectors storing
(Lines 16-18) can be implemented in a similar approach. These
values are loaded to vectors by basic vector read instructions (e.g.
_mm256_load_pd). Each vector contains values with the same time
coordinate. Every four input vectors can be obtained by transposing
corresponding vectors. Similarly, the final input vector is stored in
memory after a transpose.

3.4 Gauss-Seidel Stencil
Gauss-Seidel stencils use the newest neighbor values to update one
point. Conventionally it only requires one array to store the latest
values of all grid points as opposed to two arrays in Jacobi stencils.
Another difference between Jacobi and Gauss-Seidel stencils is that

x

t
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s = 2
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Figure 2: Temporal Vectorization of 2D5P Jacobi Stencil

the latter contains data dependencies in all the time and space loops.
Thus it is illegal to perform the conventional vectorization.

Nevertheless, the temporal vectorization of Gauss-Seidel stencils
is similar to that of Jacobi stencils. One can verify that 𝑠 > 1 is still
the correctness condition for Gauss-Seidel stencils. For the neigh-
bors whose newest values are used in the calculation, the temporal
vectorization uses their corresponding output vectors. For example,
the output vector 𝑣3 in Algorithm 3 is kept and used in the next it-
eration. The stencil computation is replaced with 𝑆𝑡𝑒𝑛𝑐𝑖𝑙(𝑣3, 𝑣1, 𝑣2)
(Line 12). It also leads to the same data reorganization cost to Jacobi
stencils. We omit the detailed explanation.

3.5 Discussion
Compared with the multi-load vectorization method, our temporal
vectorization method incurs no redundant data transfer. For one-
dimensional stencils each value 𝑎𝑡𝑥 only appears in one input vector.
Furthermore, it is easy to align all the top and down vector trans-
fers. For high-dimensional stencils 𝑎𝑡𝑥,𝑦 may be loaded in serveral
continuous iterations (𝑦 − 1, 𝑦 and 𝑦 + 1 for the 2D5P stencil) of
the next-to-innermost space loop, but it still requires fewer data
transfers than the multi-load vectorization.

Compared with the data reorganization approach, the number of
data reorganization operations in our method is fixed and irrelevant
to the vector length, the stencil order, and dimensionality. With the
double-stride optimization, the temporal vectorization incurs 0.75
lane-crossing and 2 in-lane instructions. The data reorganization
vectorization needs 1 lane-crossing and 2 in-lane instructions for
the 1D3P stencil and more for higher-order and dimension stencils.

Compared with the DLT method, the temporal vectorization
gives rise to a better reuse of the data in the cache. Though the
temporal vectorization also incorporates data transpose operations,
it only processes a small set of points and the overhead can be
amortized by stencil calculations.

The temporal vectorization, data reorganization and DLT meth-
ods achieve the same reuse pattern to the scalar code. For example,
it only needs to load one input vector to compute an output vector
for the 1D3P stencil. Thus the memory transfer volumes of their
blocking implementations are also similar. However, the temporal
vectorization leads to slower data reference frequency. Specifically,
the straightforward vectorization method touches all the input
points in the data space in one time step while the temporal vector-
ization loads these data in four time steps. It can then expect less
memory bandwidth contention, especially in multi-core executions.

Furthermore, for the two arrays in Jacobi stencils, the output
data 𝑎4𝑥 and input data 𝑎0𝑥 actually share the same array. The input
vectors can be stored in a fixed range of the other array. Thus it
actually uses one array in non-blocking Jacobi implementations
and only stores the data in two arrays at boundaries for blocking
implementations. Therefore the memory transfer volume is reduced
by a factor of 2 for Jacobi stencils.

The temporal vectorization would be represented with a set of
loop transformations, i.e. the strip-mining of the time loop, the time
skewing of the inner time loop and outermost space loop, the loop-
peel and finally the outer-loop vectorization. However, there are
some difficulties to implement it with general compiler techniques.
First, the temporal vectorization needs auxiliary variables, e.g. extra
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arrays for high-dimensional stencil. These auxiliary data often need
manual efforts [38]. Second, it often requires a transposed data
layout for efficient vector loads for high-dimensional stencils that
complicates the compiler transformations. Third, the data with time
coordinates 1, 2 and 3 are reused in CPU registers and not stored
in memory for one-dimensional stencils. Conventionally compilers
are conservative to store data to memory as performed by the
original code. Finally, for high-dimensional stencils, it is illegal to
interchange the time loop and spaces loops, this complicates the
outer-loop vectorization since it must be applied to a loop that
contains more than one inner loop.

Nevertheless, given the temporal vectorization algorithms, it is
straightforward to implement a code generator. As a comparison,
the DLTmethod can be viewed as a combination of the strip-mining
of the innermost loop and the outer-loop vectorization of the two
innermost loops. A domain-specific framework for temporal vec-
torization of stencil computations can be designed similarly.

The temporal vectorization also resembles the wavefront method
[46] (loop skewing). The wavefront method utilizes the parallelo-
gram block shape in temporal blocking. The temporal blocking aims
at exploiting the data reuse in caches and reducing the memory
transfer volume, while the temporal vectorization primarily serves
to lessen the bandwidth pressure between the CPU and cache. Fur-
thermore, the classic correctness condition of blocking [18] in our
context for the 1D3P stencil is 𝑠 ≥ 1. For example, it is legal to
group 𝑎𝑡+1𝑥 and 𝑎𝑡𝑥+1 in one atomic block but calculating them in
one vector is not allowable with the temporal vectorization. Thus,
the temporal vectorization requires a more strict condition than
the temporal blocking.

4 EVALUATION
4.1 Setup
Our experiments were conducted on three machines made of two
Intel Xeon E5-2670 processors (totally 24 cores) with 2.3 GHz clock
speed, two Intel Xeon Gold 6140 Processors (totally 36 cores) with
2.3 GHz clock speed, two AMD EPYC 7452 Processors (totally 64
cores) with 2.4 GHz clock speed, respectively. We compiled the pro-
gram with the ICC compiler version 19.1.1 using the optimization
flag ‘-O3 -xavx2’ on the two machines with Intel CPUs, and GCC
compiler version 9.1.0 with optimization flag ‘-O3 -mavx2’ on the
AMD platform.

We employ 6 Jacobi and 4 Gauss-Seidel stencils. Heat-1D, 2D
and 3D are most commonly used kernels [7, 17, 43] in the study
of optimization of stencils. They are 1D3P, 2D5P and 3D7P star
stencils that only contain dependencies on the points along each
axis. Laplacian-2D and 3D are 2D9P and 3D27P box stencils [17]
that have diagonal data dependencies. We also evaluate a 2D9P box
stencil, a particular variant called B2S23 of Conway’s Game of Life
used in Pluto [7]. Three Gauss-Seidel stencils, GS-1D, 2D and 3D
are imported from Pluto [7]. The Longest common subsequence
(LCS) is a classic problem solved by the dynamic programming
method. It can be implemented as a 1D Gauss-Seidel stencil. The
performance is reported using Gstencils/s, i.e. the number of points
updated per second.

In the next two subsections the relatively comprehensive results
of the temporal vectorization on the Intel Xeon E5-2670 platform

are presented and analyzed. In the last subsection we show the
results on the other two platform to demonstrate the performance
portability.

4.2 Sequential Results
We implemented a sequential code of the temporal vectorization
without any blocking scheme for each stencil kernel, The results of
sequential codes exhibit the sensitivity to cache bandwidth.

Jacobi Stencils. Figure 3 to 8 show the sequential performance
results of Jacobi stencils. The auto curves are the results of compiler
auto-vectorization where ICC uses the multi-load method. The tem-
poral vectorization of the Heat-1D stencil achieves significant per-
formance improvement over the auto-vectorization and scalar code
for problem size larger than 512. However, the auto-vectorization
performs better than the temporal vectorization for smaller problem
sizes. The reason is the transpose overhead of initial and final input
vectors assembling in the temporal vectorization and this overhead
can be amortized for larger sizes. The auto-vectorization curve likes
a staircase that contains sharp falls at sizes of cache levels. This
kind of performance curve is ubiquitous. For stencil computations,
this demonstrates that the auto-vectorization is more sensitive to
the cache bandwidth than the scalar code. On the contrary, the
temporal vectorization produces a flatter curve due to fewer CPU-
cache data accesses. It indicates that the temporal vectorization is
less sensitive to the cache bandwidth.

The Heat-2D and 3D stencils are star stencils. For continuous
output vector calculations, there is no data alignment conflict over
outer space loops. Thus the data alignment conflict only exists in
the uni-stride space dimension and the auto-vectorization makes an
optimal vector utilization for other space dimensions. The benefits
of the temporal vectorization may be outweighted by its downsides.
For sequential results, the temporal vectorization still incur flatter
curves than the auto-vectorization. It obtains competitive andworse
performance for sizes smaller than last-level cache compared with
the auto-vectorization for Heat-2D and 3D stencil, respectively.
This again implies the better bandwidth utilization of the temporal
vectorization. As demonstrated by existing work, the 3D7P Jacobi
stencil exhibits limited improvements on new parallelization [2]
and vectorization schemes [17]. Our results of Heat-3D reveal a
similar phenomenon.

The Laplacian-2D, 3D and Life stencils are box stencils. The
auto-vectorization leads to data alignment conflicts on all space di-
mensions. Therefore the temporal vectorization achieves visible and
similar improvements for them. The Life stencil performs more op-
erations than the Laplacian-2D stencil. Thus the auto-vectorization
is less sensitive to cache bandwidth as shown in the figure 8.

Table 2 lists the number of arithmetic operations, data reor-
ganization instructions and memory accesses. The left columns
show the analytical results per vector computation. The second
column exhibits the number of arithmetic instructions and Flops
(in brackets). In our temporal vectorization, Heat-1D utilizes the
double-stride optimization and incurs 0.75 lane-crossing and 2 in-
lane instructions according to Table 1. All other stencils use the
single-stride method and lead to 1 lane-crossing and 2.75 in-lane
instructions per vector computation.
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Table 2: Analytical and Measured Numbers of Vector Instructions (×109) in Sequential Executions of Floating Point Arithmetic Jacobi Stencils.
analytical number per vector computation Problem

Input
Size

#vector
computations

(×109)

measured number (corresponding analytical number in bracket) (×109)
arith.
(Flops)

our auto arith. our auto
organ. load store load store organ. load store load store

Heat-1D 3 (4) 0.75+2 0.25 0.25 3 1 16𝑀 × 6𝐾 24 72.2 (72) 78.3 (66) 6.3 (6) 6.2 (6) 72.4 (72) 24.2 (24)
Heat-2D 8 (10) 1+2.75 3.25 1.25 5 1 8𝐾2

× 2𝐾 32 257 (256) 131 (120) 121 (104) 41.4 (40) 161 (160) 33.2 (32)
Heat-3D 11 (15) 1+2.75 5.25 1.25 7 1 8003 × 200 25.6 285 (281) 107 (96) 160 (134) 34.1 (32) 183 (179) 26.5 (25.6)
Lapl-2D 9 (10) 1+2.75 3.25 1.25 9 1 8𝐾2

× 2𝐾 32 295 (288) 136 (120) 119 (104) 40.8 (40) 287 (288) 32.7 (32)
Lapl-3D 27 (30) 1+2.75 9.25 1.25 27 1 8003 × 200 25.6 695 (691) 116 (96) 312 (236) 38.5 (32) 712 (691) 31.2 (25.6)
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Figure 3: Heat-1D
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Figure 4: Heat-2D
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Figure 5: Heat-3D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

128 256 512 1024 2048 4096 8192

G
st
en
ci
ls
/s

Problem Size (=x2)

our
auto
scalar

Figure 6: Laplacian-2D
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Figure 7: Laplacian-3D
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Figure 11: GS-3D
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Figure 12: LCS

The middle columns show the problem sizes. The right columns
present the measured and analytical numbers (in brackets). The
analytical number equals the corresponding value multiplied by
the number of vector computations listed in the middle column.
There are close matches between the measured and analytical num-
bers. The temporal vectorization incurs a larger total number of
instructions except arithmetic ones than the auto-vectorization.

However, the data reorganization instructions are executed in an
independent execution unit in Intel microarchitectures. Further-
more, although the number of memory stores is larger with the
temporal vectorization, the total number of memory accesses is
smaller.

Gauss-Seidel Stencils. Figure 9 to 12 exhibits the sequential perfor-
mance results of Gauss-Seidel stencils. The temporal vectorization
achieves significant performance improvements for all Gauss-Seidel
stencils over the scalar codes. All sequential executions of the scalar
codes without blocking achieve a similar absolute performance of
around 0.4Gstencils/s. This demonstrates that Gauss-Seidel stencils
are limited by data dependencies.

For the 1D sequential execution, it obtains a super-linear speedup
of up to 4.4. The reason is that the temporal vectorization leads to
better utilization of the memory bandwidth. The curve is similar
to that of the Head-1D Jacobi stencil. For smaller problem size
the scalar ratio, i.e. the percentage of points processed with scalar
arithmetic operations is larger. For example, with the space stride
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Figure 13: Heat-1D
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Figure 14: Heat-2D
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Figure 15: Heat-3D
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Figure 17: Laplacian-3D
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Figure 21: GS-3D
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Table 3: Blocking Sizes and Performance of Gauss-Seidel Stencils on 24-core Executions
Input
Size

Our
Blocking

Pluto
Blocking

Our
Gstencils

Pluto
Gstencils

Speedup
over Pluto

GS-1D 16𝑀 × 6𝐾 2048 × 64 256 × 128 29.0 7.43 3.90
GS-2D 8𝐾2

× 2𝐾 1282 × 32 322 × 32 14.3 7.36 1.95
GS-3D 8003 × 200 323 × 32 83 × 8 7.48 3.73 2.00
LCS 200𝐾 × 200𝐾 4096 × 4096 128 × 128 33.5 7.76 4.31

𝑠 = 7, there are 84 points in a time tile need to be calculated by
the scalar codes (Lines 2-4 and 24-27 in Algorithm 3). This leads
to a scalar ratio of 16% for problem size 𝑁𝑋 = 128 and 1% for
𝑁𝑋 = 2048.

For higher-dimensional Gauss-Seidel stencils, we see similar
trends in sequential results but more sharp performance decreases
when the problem size is larger than the L3 cache size. However, the
in-cache performance is relatively steady and it demonstrates the
less sensitivity to the cache bandwidth of the temporal vectorization.
The maximal speedup is 3.8 for the 2D stencil with a problem
size 20482 and 3.6 for the 3D stencil with a problem size 1283,
respectively.

The LCS stencil result is similar to that of the 1D Gauss-Seidel
stencil. It processes integer values with integer SIMD instructions
and has a theoretical maximal speedup of 8. The scalar code per-
forms either𝑚𝑎𝑥(𝑙𝑐𝑠(︀𝑥−1⌋︀(︀𝑦⌋︀, 𝑙𝑐𝑠(︀𝑥⌋︀(︀𝑦−1⌋︀) or 𝑙𝑐𝑠(︀𝑥−1⌋︀(︀𝑦−1⌋︀+1

for calculating 𝑙𝑐𝑠(︀𝑥⌋︀(︀𝑦⌋︀ depending on the equality of two char-
acters 𝐴(︀𝑥⌋︀ and 𝐵(︀𝑦⌋︀. However, the temporal vectorization needs
to execute all these computations and obtains the correct vector
by a blend instruction with a mask vector of equalities. Thus we
would expect smaller speedups compared with the 1D Gauss-Seidel
stencil. Nevertheless, the temporal vectorization still achieves good
improvements and yields a maximal speedup of 4.3 over the scalar
code.

4.3 Parallel Results
We also implemented parallel codes with a diamond and parallel-
ogram [47] hybrid tiling for Jacobi stencils. It is illegal to employ
diamond tiling for Gauss-Seidel stencils. Thus we utilize parallelo-
gram tiling for all space dimensions of Gauss-Seidel stencils. The
parallel codes are implemented with OpenMP and scaled from uni-
core to all 24 cores. We exhaustively tested all blocking sizes and
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Table 4: Performane and Measured Hardware event counts (×109) of Jacobi
Stencils on 24-core Executions

Blocking size Gstencils
our

speedup
memory
accesses

L2
misses

L3
misses

Heat-1D

our 16384 × 128 74.1 1 15.3 0.027 0.015
Pluto 2048 × 2048 45.6 1.63 100 0.008 0.002
TEST 2048 × 128 43.9 1.69 100 0.085 0.035
SDSL 512 × 256 65.7 1.13 102 0.104 0.045

Heat-2D

our 256 × 256 × 64 25.3 1 186 2.11 0.49
Pluto 64 × 64 × 64 19.8 1.28 278 1.08 0.10
TEST 128 × 256 × 64 20.3 1.25 211 18.0 0.41
SDSL 128 × 128 × 64 18.8 1.35 240 18.6 0.53

Heat-3D

our 64 × 16 × 64 × 32 7.37 1 440 24.3 4.13
Pluto 16 × 16 × 16 × 16 4.47 1.65 615 11.7 5.35
TEST 32 × 32 × 64 × 16 6.85 1.08 312 33.9 3.83
SDSL 16 × 16 × 128 × 8 6.33 1.16 320 24.4 3.08

Lapl-2D
our 256 × 256 × 64 22.3 1 205 2.48 0.65
Pluto 64 × 64 × 64 15.6 1.43 425 1.05 0.01
TEST 128 × 256 × 64 17.4 1.28 361 12.9 0.42

Lapl-3D
our 64 × 16 × 64 × 32 5.17 1 933 31.4 4.23
Pluto 12 × 12 × 12 × 12 2.65 1.95 1497 9.97 6.94
TEST 32 × 32 × 64 × 16 4.07 1.27 943 36.6 3.74

Life
our 256 × 256 × 32 30.7 1 138 1.07 0.38
Pluto 128 × 128 × 128 13.1 2.34 381 0.74 0.074
TEST 128 × 128 × 32 23.1 1.33 234 1.21 0.74

show the one producing the best performance. However, we ob-
served that the performance is very sensitive to the tile sizes, but
this requires significant effort in auto-tuning and should be done
separately.

Jacobi Stencils. Figure 13 to 18 show the parallel results of Jacobi
stencils. The problem sizes are identical to the ones listed in Table
2. For Heat stencils, we compared the temporal vectorization with
Pluto [2], SDSL [17] and TEST [52]. Pluto and TEST employ auto-
vectorization while SDSL utilizes the DLT vectorization scheme.
Table 4 lists the blocking sizes and the performance, the number of
memory accesses and cache misses on 24-core executions. We also
provide the results of Yask [51] that implements vector-folding [50]
for 3D Jacobi stencils. Note that Yask has an auto-tuning scheme
so we omit the blocking sizes and profiling results for it.

ForHeat-1D, all methods produce similar scalabilities with speedup
around 20x for 24-core over uni-core. On 24-core execution, the
speedups of the temporal vectorization are 1.62x, 1.68x and 1.12x
over Pluto, TEST and SDSL, respectively. The temporal vectoriza-
tion favors much larger blocking sizes as it extremely decreases the
memory accesses. We also see a similar data locality, total memory
accesses around 100 × 109 for other methods.

The temporal vectorization obtains visible performance improve-
ment for Heat-2D but only comparable results for Heat-3D. This
trend is consistent with the sequential performance results. The
reason is similar, i.e. the auto-vectorization only incurs data align-
ment conflicts over the unit-stride dimension. The event counts in
Table 4 also demonstrate that for higher dimension star stencils the
temporal vectorization leads to similar or higher memory accesses
numbers for 2D or 3D Heat stencil. It is difficult to connect the
event counts with the final performance with a simple model. How-
ever, the numbers still exhibit similar results to those in sequential
executions and are consistent with the Gstencils.

The temporal vectorization obtain obvious speedups for box
stencils as shown in Figure 16 to 18. SDSL is unable to deal with the
life stencil since it contains conditional statements. We also failed to
generate correct SDSL codes for the Laplacian-2D and 3D kernels.
The scalabilities are similar to that of Heat-2D and 3D stencils. They
both have a decline in the 24-core execution for Pluto and TEST.

Table 5: Performane Results on Intel Xeon Gold 6140 (36 cores)

our Pluto TEST SDSL Speedup
over Pluto

Speedup
over TEST

Speedup
over SDSL

Heat-1D 110 79.3 70.0 89.2 1.39 1.57 1.23
Heat-2D 41.1 33.6 38.1 33.5 1.22 1.08 1.22
Heat-3D 9.9 6.0 7.4 8.4 1.65 1.34 1.17
Lapl-2D 30.3 24.4 28.1 - 1.25 1.07 -
Lapl-3D 7.3 4.4 4.9 - 1.66 1.49 -
Life 49.3 20.5 40.2 - 2.45 1.23 -

GS-1D 26.2 8.2 - - 3.19 - -
GS-2D 20.9 11.4 - - 1.83 - -
GS-3D 10.2 5.4 - - 1.89 - -
LCS 58.8 14.3 - - 4.11 - -

The temporal vectorization produces better scalabilities for both
stencils due to fewer data accesses as demonstrated in Table 4. Note
that Pluto incurs the most memory accesses due to its complicated
loop control variables, while obtain the fewest cache misses for all
stencils. In both 3D stencils, Yask leads to the lowest performance.
It is suitable for higher-order stencils where the folding of vectors
incurs less memory footprint.

Gauss-Seidel Stencils. Figure 19 to 22 shows the parallel results
of Gauss-Seidel stencils. We only compared with Pluto since SDSL
and TEST are not applicable to Gauss-Seidel stencils. Pluto can only
generate scalar codes. Table 3 lists the blocking sizes used in the
temporal vectorization and Pluto, and the performance results in
the 24-core executions.

For GS-1D stencil both the temporal vectorization and Pluto
achieve good scalabilities. Compared with the single-core execu-
tion, the 24-core results reach speedups of 20.7 and 19.6 for the
vectorization and Pluto code, respectively. These speedup results
are comparable to those of Jacobi stencils and demonstrate that the
parallelogram tiling provides competitive scalabilities. The tempo-
ral vectorization delivers an average speedup of 3.5 and a maximal
speedup of 3.9 over Pluto. For LCS, the speedup on 24-core execu-
tion is 4.31 over Pluto.

For the 2D and 3D stencil, the temporal vectorization achieves
better scalabilities than Pluto. For example, the speedup of 24-core
over a single core of the GS-3D is 11.7 for Pluto and 19.3 for the
temporal vectorization. For the method comparison, the temporal
vectorization obtains an average speedup of 1.94 and 1.53 for 2D
and 3D stencils, respectively.

4.4 Performance Portability
Table 5 and 6 show the results on the machines with two Intel Xeon
Gold 6140 CPUs (totally 36 cores) and with two AMD EPYC 7452
CPUs (totally 64 cores), respectively. The blocking sizes are similar
to those used above.

Table 6: Performane Results on AMD EPYC 7452 (64 cores)

our Pluto TEST SDSL Speedup
over Pluto

Speedup
over TEST

Speedup
over SDSL

Heat-1D 222 186 166 176 1.19 1.34 1.26
Heat-2D 71.2 63.7 57.4 60.1 1.13 1.25 1.18
Heat-3D 11.5 12.6 7.1 11.7 0.91 1.61 0.98
Lapl-2D 66.6 61.4 60.5 - 1.08 1.10 -
Lapl-3D 7.5 4.7 6.2 - 1.60 1.25 -
Life 80.4 42.3 43.3 - 1.90 1.86 -

GS-1D 38.4 8.2 - - 4.80 - -
GS-2D 35.8 6.5 - - 5.51 - -
GS-3D 12.1 3.4 - - 3.55 - -
LCS 81.3 22.8 - - 3.57 - -
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The speedups on the Intel Xeon Gold 6140 CPU are similar to
those on the Intel Xeon E5-2670 processor. For the Heat-1D stencil,
SDSL still achieves the best performance among the three com-
pared counterparts. The temporal vectorization obtains a speedup
of 1.23 over SDSL, which is higher than 1.13 on the Intel Xeon
E5-2670 CPUs. For high-dimensional stencils, the temporal vector-
ization achieves similar speedups over Pluto and SDSL but smaller
speedups over TEST on Heat-2D and Heat-3D stencils. For box
stencils, Lapl-2D, Lapl-3D and Life, the speedups on both Intel ma-
chines are comparable. The temporal vectorization obtains lower
speedups on the newer Intel CPUs for all Gauss-Seidel stencils. The
reason may be the improved pipelined execution efficiency in the
latter CPU and consequently the temporal vectorization derives
fewer improvements over scalar codes. However, it still achieves
visible performance increases and it demonstrates the effectiveness
and performance portability on both Intel CPUs.

The performance on the AMD machine seems a little different
from that on Intel platforms. On the AMD machine, the temporal
vectorization obtains lower speedups for all Jacobi stencils. The
reason is that the parallelism of Pluto, TEST and SDSl makes better
utilization of the 64 cores than ours. In particular, they all utilize a
diamond-like blocking schemewhile our blocking schemewill incur
a pipelined start-up and drain phase. Thus For Heat-1D, Lapl-3D
and Life stencils, the improvements are still visible and comparable
to those on the Intel platforms. However, for Heat-2D, Heat-3D and
Lapl-2D stencils, Pluto, TEST or SDSL is competitive or even faster
than our scheme.

On the contrary, the temporal vectorization obtains higher speedups
for all Gauss-Seidel stencils on the AMD machine. The reason is
two-fold. First, all methods must employ the parallelogram tiling
scheme for Gauss-Seidel stencils and they exhibit similar paral-
lelism. Our blocking scheme will not suffer from concurrency loss
compared with other schemes as in the Jacobi stencils. Second,
the microarchitecture pipeline implementation may be inferior to
Intel CPUs, which benefits the temporal vectorization to achieve
super-linear speedups for GS-1D and GS-2D.

5 RELATEDWORK
Tiling [24, 45] is regarded as a technique to improve the data locality.
However, better data locality generally gives rise to preferable
parallelism between blocks. This parallelism is coarse-grained since
tiling targets the cache level and groups a large number of data
elements. Vectorization, on the contrary, is to exploit fine-grained
parallelism and group small data elements in vector registers. In
sum, tiling and vectorization concentrates the cache level and CPU
microarchitecture level, and explores inter-block and intra-register
parallelism, respectively. On the other hand, tiling and vectorization
share similar goals and fundamental analytical approaches [49],
especially for the temporal tiling and temporal vectorization. Our
work shows a stricter condition in data dependence analysis for the
temporal vectorization. However, a thorough comparison between
them is beyond the scope of this paper.

The compiler community has been studying sophisticated uni-
versal vectorization techniques [1, 15, 21, 25, 32, 40]. Previous work
[13, 26, 48] has proposed many solutions to address unaligned vec-
tor transfers. There are also many studies focusing on reducing

the data preparation overhead [16, 36, 55]. The DLT [16] assembles
points in the unit-stride space dimension that are free of intra-
vector read-read dependencies in one vector. Other more general
data organization optimizations include data alignment optimiza-
tion [6] and data interleaving [31, 55], However, some of these
works are too general to capture the specific properties of stencils.
For example, the data alignment conflicts for stencil refer to over-
lapped vector loads, it is unable to attack this problem by stream
shifts [13].

The state-of-art compilers usually vectorize the innermost loop.
Outer-loop vectorization techniques [32] often focus on the case
where the innermost loop is illegal to be vectorized. One relaxed
legality condition of the outer-loop vectorization is that it is in-
terchangeable with the inner loop. However, the time loop is not
interchangeable with space loops according to the data dependen-
cies. Though more strict conditions exist, direct outer-loop vec-
torization at the time loop is still illegal. For slightly complicated
codes, outer-loop vectorization requires auxiliary arrays and pro-
grammers need to explicitly declares them [38]. Some outer-loop
vectorization techniques require the iteration number of the inner
loop is invariant to the outer-loop. However, many blocked stencil
algorithms [14, 17, 43, 52] shrink or expand the data range in all
space dimensions as the time proceeds. For example, the classic
diamond tiling [23] introduces a diamond shape in the iteration
space for a one-dimensional stencil. It enlarges the data space in
the first half time and then decreases it in the rest time.

There exists a lot of work on improving the register reuse by
utilizing the associative property of stencil calculations. The funda-
mental idea is to find a better order of statements across iterations.
Deitz et al [10] proposes a compiler formulation and transforma-
tion called array common subexpression elimination. A similar
idea called partial sum is also studied in [3]. Cruz and Araya-polo
[9] and Stock et al [41] combine the gather (update an output ele-
ment with all its neighbors) and scatter (update all its neighbors
with one input element) patterns in one and many space dimen-
sions, respectively. Several studies [19, 27, 35, 53] describe register
reuse frameworks for GPUs. Yount [50] proposed a vector folding
method to group points in the entire data space rather than a sin-
gle dimension. However, prior work either targets scalar registers
for high-order stencils on GPUs or specific stencils with constant
and symmetrical coefficients. They only consider the reordering
in one time step and data alignment conflicts are inevitable with
vectorization. Furthermore, these methods are not applicable to
and examined for Gauss-Seidel stencils. The temporal vectorization
preserves the same calculation order to the scalar code. Thus we
believe this work can be incorporated into our scheme.

Another branch of work focuses on themultigrid method [22, 39].
Douglas et al [12] studied the locality exploration. Kazhdan and
Hoppe [20] proposed the streaming concept, a schedule of blocks
to improve both inter-block locality and parallelism. Park et al
[33] utilizes a reordering scheme to explore parallelism. Bell et
al [5] studied the fine-grained parallelism in multigrid method
using a set of parallel primitives. For vectorization, most work
either depends on the compiler auto-vectorization directly [4, 42]
or employs simple vectorization schemes. For example, in [44],
the straightforward SIMDization scheme for Gauss-Seidel stencils
“wastes half the compute capability” on both CPU and KNC. For
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the multigrid method, the temporal vectorization is only applicable
to the update inside each grid level since the data sizes (the spatial
space) of grids with various granularities are different.

In sum, to the best of our knowledge, we are unaware of any
vectorization scheme along the time dimension in existing stencil
and multi-grid literature.

6 CONCLUSION
We have presented a new temporal vectorization scheme. It vec-
torizes the stencil computation in the whole iteration space and
assembles points with different time coordinate in one vector. The
temporal vectorization leads to a small fixed number of vector re-
organizations that is irrelevant to the vector length, stencil order,
and dimension. Furthermore, it is also applicable to Gauss-Seidel
stencils. The effectiveness of the temporal vectorization is demon-
strated by various Jacobi and Gauss-Seidel stencils. Future work
will design a framework to automatically generate the stencil codes.
We will also design an auto-tuning method to efficiently search the
best block size.

Our ongoing work includes: (1) the temporal vectorization ex-
tension on more complicated stencils like Finite-difference time-
domain (FDTD), Lattice Boltzmannmethods (LBM), red-blackGauss-
Seidel and variable coefficient stencils, (2) a domain-specific com-
piler that automatically generates the temporal blocking and vec-
torization codes.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Our experiments were conducted on a machine made of two Intel
Xeon E5-2670 processors with 2.30 GHz clock speed. We compiled
the program with the ICC compiler version 19.1.1, using the opti-
mization flag ‘-O3 -xHost’.

We employ 6 Jacobi and 4 Gauss-Seidel stencils. Heat-1D, 2D and
3D are most commonly used kernels in the study of optimization of
stencils. They are 1D3P, 2D5P and 3D7P star stencils that only con-
tain dependencies on the points along each axis. Laplacian-2D and
3D are 2D9P and 3D27P box stencils that have diagonal data depen-
dencies. We also evaluate a 2D9P box stencil, a particular variant
called B2S23 of Conway’s Game of Life used in Pluto. Three Gauss-
Seidel stencils, GS-1D, 2D and 3D are imported from Pluto. The
Longest common subsequence (LCS) is a classic problem solved by
the dynamic programming method. It can be implemented as a 1D
Gauss-Seidel stencil. The performance is reported using Gstencils/s,
i.e. the number of points updated per second.

The compared software:
- SDSl: http://hpcrl.cse.ohio-state.edu/sdslc/sdslc-0.3.2.tar.gz
- Pluto: https://github.com/bondhugula/pluto/
- TEST: https://github.com/yuan-liang/testencil
- Yask: https://github.com/intel/yask

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5151491
Artifact name: VecTime

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz

Operating systems and versions: CentOS release 8.2.2004, Linux
kernel 4.18.0

Compilers and versions: icc version 19.1.1.217
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