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Abstract—Stencil computations play a pivotal role in numerous
scientific and industrial applications, yet their efficient execution
on specialized hardware accelerators like Tensor Core Units
(TCUs) remains a challenge. Despite previous attempts to ad-
dress this issue, performance bottlenecks persist, particularly in
memory access redundancy. This paper introduces LoRAStencil1,
a novel stencil computing system designed to mitigate memory
access redundancies on TCUs through low-rank adaptation. We
first identify a nuanced form of this redundancy, dimension
residue, specific to TCUs. Then LoRAStencil leverages orches-
trated mathematical transformations to decompose stencil weight
matrices into smaller rank-1 matrices, facilitating efficient data
gathering along residual dimensions. It comprises three key
components: memory-efficient Residual Dimension Gathering to
facilitate more data reuse, compute-saving Pyramidal Matrix
Adaptation to exploit the inherent low-rank characteristics, and
performance-boosting Butterfly Vector Swapping to circumvent
all data shuffles. Comprehensive evaluations demonstrate that
LoRAStencil address dimension residues effectively, which out-
performs state-of-the-arts with up to a 2.16x speedup, offering
promising advancements for efficient tensorized stencil compu-
tation on TCUs by Low-Rank Adaptation.

Index Terms—Stencil Computation, High Performance Com-
puting, Matrix Multiplication, Tensor Cores, GPU

I. INTRODUCTION

Deep learning represents a crucial stride towards achieving

human-level intelligence, with matrix multiplication (MM)

operations playing a central and accelerated role through

specialized units in current and emerging processors. On

NVIDIA GPUs, these units, known as Tensor Core Units

(TCUs), significantly enhance the execution of various deep

learning models [1].

In contrast to the relatively standardized MM operations

in deep learning models, computational patterns within High-

Performance Computing (HPC) exhibit greater complexity

and diversity. The Berkeley view abstracts frequently-used

computational patterns as 13 different dwarfs in HPC, each

with numerous branches catering to various scientific and

industrial applications [2, 3].
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Stencil computation, acknowledged as one of the 13 HPC

dwarfs, represents a performance-limiting algorithm address-

ing scientific and industrial problems such as fluid dynam-

ics [4, 5], weather forecasting [6, 7], earth modeling [8] and

wave equation [9, 10]. Characterized by numerous kernels,

stencil computation iteratively updates each point within a d-

dimensional spatial grid along the temporal dimension by the

weighted sum of itself and neighboring points [11, 12].

For an extended period, research in HPC and deep learning

has increasingly diverged, each focusing on specific applica-

tion domains. Much of the prior work on stencil computations

has been centered on CPU or GPU CUDA cores, thus fail-

ing to leverage the wealth of algorithms and newly-released

hardware like TCUs in deep learning. One pioneering effort is

ConvStencil [13], which represents the first attempt to bridge

the gap between stencil computations in HPC and convolution

operations in deep learning. Through a well-structured data

layout known as stencil2row, ConvStencil transforms stencil

computation into MM, thereby leading the way in unlocking

the power of TCUs on GPU architectures.

In MM-based computing systems like ConvStencil, a sig-

nificant yet hard-to-see performance bottleneck emerges. Ar-

chitecturally, the smallest computing unit (fragment) on TCU

hardware is designed for two-dimensional MM operations.

During memory access, data are loaded into the TCU fragment

in 2D tiles. However, during computation, the inner product

operation in MM can only gather data along a single dimension

(either columns or rows) on each matrix. When the dimen-

sionality of the stencil kernel exceeds one, the number of

dimensions involved in each computation is fewer than that for

memory access. This discrepancy results in dimension residue

specific to the TCU architecture, where redundant loads and

computations along the residual dimension contribute to a low

compute-to-memory ratio.

Dimension residue is exemplified in the design of Con-

vStencil, where the stencil2row transformation is employed

to prepare the data layout for subsequent MM operations.

However, this transformation introduces two additional ma-

trices with a significant overlap of repeating elements. As a

consequence, ConvStencil incurs a notable increase in memory

access and storage overhead, exacerbating the memory-bound
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nature inherent in stencil computations.

In this paper, we propose Low-Rank Adaptation Stencil

(LORASTENCIL), a stencil computing system designed to

reduce memory access redundancies across both dimensions

on TCUs through a series of mathematically-equivalent low-

rank matrix adaptation.

The design of LoRAStencil is grounded on two important

observations: 1) A rank-1 matrix can be expressed as the outer

product of a column vector u and a row vector v; 2) The

matrix constituted by stencil weights in fact reside on a low

intrinsic rank-r, allowing it to be decomposed into r rank-1

matrices.

Guided by these observations, the key idea behind Lo-

RAStencil is Low-Rank Adaptation. Leveraging the rank-1

weight matrices characterized by the lowest rank, LoRASten-

cil initiates weight-data gathering along a single dimension

through MM. Considering that a rank-1 weight matrix can

be decomposed into the outer product of two vectors, it

is theoretically feasible to extend data gathering to residual

dimensions via mathematical transformations. For a stencil

with an arbitrary rank weight matrix, the original weight

matrix can be decomposed into the sum of several low-

rank rank-1 weight matrices. Consequently, accumulating the

results involving multiple rank-1 weight matrices facilitates

the computation of the entire stencil.

LoRAStencil incorporates three key techniques: memory-

efficient Residual Dimension Gathering, compute-saving Pyra-

midal Matrix Adaptation, and performance-boosting Butterfly

Vector Swapping.

Residual Dimension Gathering is centered around Matrix

Chain Multiplication on the TCU fragment. Rank-1 matrices,

which can be expressed as the outer product of two vectors,

enable continuous weight-data gathering along the residual

dimensions. This computational approach enhances memory

access efficiency by facilitating more effective data reuse on

the TCU, thereby reducing both the volume and latency of data

loading and alleviating the memory-bound nature inherent in

stencil computations.

Pyramidal Matrix Adaptation extends the algorithm from

rank-1 matrices to matrices of any rank. It effectively trans-

forms the original weight matrix in stencil computation into

multiple overlapped rank-1 weight matrices. Additionally, by

leveraging the symmetry often found in stencil computations,

it efficiently exploits the inherent low-rank characteristics of

the weight matrix, thereby reducing the number of generated

rank-1 weight matrices and minimizing redundant computa-

tions on the TCU.

Butterfly Vector Swapping operates at the vector level,

employing a butterfly-like weight swapping algorithm to

meticulously organize and control computations on the TCU

fragment. Essentially, it optimizes the computational process

of the algorithm from a mathematical perspective, circumvent-

ing the need for a plethora of time-consuming data shuffles

within the TCU fragment. This optimization streamlines the

implementation of Matrix Chain Multiplication algorithms,

effectively minimizing idle bubbles in computations.

In comparison to several state-of-the-art approaches on

GPU (cuDNN [14, 15], Brick [16–18], DRStencil [19]) and

TCU (AMOS [20], TCStencil [21] and ConvStencil [13]),

experimental results validate the effectiveness of LoRAStencil.

Our contributions are outlined as follows:

• We introduce LORASTENCIL, an innovative stencil com-

puting system designed to reduce redundancies in mem-

ory access across both dimensions on Tensor Core Units

through a series of mathematically-equivalent low-rank

matrix adaptation.

• LoRAStencil consists of 3 key techniques: 1) memory-

efficient Residual Dimension Gathering on rank-1 ma-

trix transformation to address dimension residues;

2) compute-saving Pyramidal Matrix Adaptation from

rank-1 matrices to complete stencil computation; 3)

performance-boosting Butterfly Vector Swapping at the

vector level for an efficient mapping from algorithm to

hardware.

• We implement these techniques and generalize them on

various kernels. Experimental results demonstrate the

effectiveness of LoRAStencil, surpassing various state-

of-the-arts and achieving up to 2.16x speedup.

II. BACKGROUND AND MOTIVATION

Algorithm 1 Box-2D9P stencil (1 time step)

Input: mesh A, weight c11 ∼ c33
Output: mesh B
1: for point[i][j] in A do

2: B[i][j] = c11 ×A[i− 1][j − 1] + c12 ×A[i− 1][j] + c13 ×A[i−
1][j + 1] + c21 × A[i][j − 1] + c22 × A[i][j] + c23 × A[i][j + 1] +
c31 ×A[i+ 1][j − 1] + c32 ×A[i+ 1][j] + c33 ×A[i+ 1][j + 1]

3: end for

Stencil computations perform iterative updates on multi-

dimensional inputs following a predefined pattern, with the

set of points involved determined by the radius, also referred

to order. The shape of the predefined pattern is primarily

classified into two types: star and box. A star stencil computes

the weighted sum of a central point and its neighbors that

are displaced in only a single dimension. In contrast, a box

stencil involves calculating the weighted sum within a square

(or cube) centered on the central point. Each point in stencil

computation is associated with specific weights. Algorithm 1

illustrates the stencil computation of Box-2D9P (radius: 1,

shape: box, dimensions: 2, points: 9), which updates in a single

temporal iteration.

A. Tensor Cores

Tensor Core Units on NVIDIA GPUs represent a specialized

hardware component, meticulously engineered to expedite

matrix multiplication and accumulation (MMA), as delineated

in Equation 1. These units demonstrate a performance sig-

nificantly superior to that of traditional CUDA cores when

executing MMA operations.

Dm×n = Am×k ×Bk×n + Cm×n (1)
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Fig. 1: (a) Dimension Residue Problem in stencil computa-

tions on TCU. (b) Redundant memory access in the residual

dimension.

TCUs can be programmed at the warp level through the

CUDA Warp Matrix Multiply and Accumulate (WMMA) API

for conducting matrix operations. Before being processed by

TCUs, data must be loaded into the fragment - a specialized

data structure. The dimensions of fragments adhere to strict

specifications, with current support in FP64 precision accom-

modating only 8×8×4 MMA operations (referring to m = 8,

n = 8 and k = 4 in Equation (1)).

B. Dimension Residue

Dimension Residue is a critical bottleneck in tensorized

stencil computation, stemming from the discrepancy between

MM and stencil dependency. We illustrate this issue with a

straightforward example.

Figure 1(a) illustrates the misalignment between 2D stencil

dependency dimensions and MM computational dimensions.

In stencil computations, dependencies exist across both di-

mensions. However, the atomic operation in MM is the inner

product of vectors, which only gather weight-data pairs along

a single dimension. As depicted in Figure 1(a), the horizontal

dimension represents the collected dimension, while the verti-

cal dimension is the residual dimension (where dependencies

are not collected).

Figure 1(b) demonstrates the redundant access caused by

dimension residue. In tensorized stencil computation for Box-

2D9P, a 3×3 square (orange block) is to be computed, which

necessitates reliance on a 5×5 square. It can be observed that

the input is read three times to form three 3×5 matrices. Each

matrix undergoes MM to collect horizontal dependencies, and

then partial result matrices are accumulated to collect vertical

dependencies, yielding the stencil computation result. During

this process, the data within red input matrix is also read

by blue and yellow input matrices, resulting in significant

redundant access.
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Fig. 2: Symmetry of Weights and Radially Symmetric Matrix.

The same color indicates that the corresponding points have

identical weights.

C. Symmetry in Stencil

In industrial and scientific computing, stencil computations

with constant weights and regular grid points are widely

employed [11, 22–24]. In such stencils, the weights fre-

quently exhibit symmetric properties [12, 25–30], meaning

that neighboring points with the same Euclidean distance of

their corresponding dependence share identical weight. This

characteristic is particularly evident in the solutions of practi-

cal problems such as heat conduction [11, 31, 32] and wave

propagation equations [8, 33], where the weights inherently

possess such symmetric traits.

Taking the Box-2D9P stencil as an example, Figure 2

illustrates the symmetric properties of these weights, where

the same color indicates that neighboring points share identical

weights. We refer to the matrix composed of such stencil

weights as a radially symmetric matrix. Few studies have also

explored the symmetry in stencil computations [12, 26, 34],

however, they have not delved into the rank-related properties

of the weight matrices. We observe that, due to the row and

column symmetry inherent in radially symmetric matrices,

these matrices exhibit low-rank characteristics. Specifically,

for a kernel with a radius of h, and a weight matrix W of

size (2h + 1) × (2h + 1), it holds that rank(W ) ≤ h + 1.

We can exploit this low-rank property to convert stencil into

efficient matrix computations on TCUs.

D. Mathematical Derivation

In this subsection, we will mathematically introduce the

computational process of LoRAStencil using inductive rea-

soning. Through mathematical derivation, we provide a novel

Matrix Chain Multiplication approach to tensorized stencil

computation. We elucidate our derivation by transitioning from

the specific case (rank = 1) to the general case (rank > 1).

The explanation of symbols used in our analysis is listed in

Table I.

From Algorithm 1, we can observe that stencil computation

is essentially the accumulation of the element-wise product

of two matrices, which is the Frobenius inner product fun-

damentally. For instance, for a stencil with a kernel size of

n2, where n = 2h+1, h ∈ N
+, to compute the result at point

(h+1, h+1), the computation can be derived from Equation 2,

⟨C,X⟩F =

2h+1
∑

i=1

2h+1
∑

j=1

ci,jxi,j (2)



where C and X respectively denote the weight matrix and

input matrix.

1) rank = 1. When the weight matrix C is a rank-1

matrix, C contains only one linearly independent column

vector, denoted as u. Consequently, C can be represented

through the basis vector u and another vector v, which implies

C = u⊗ v
T (3)

Consequently, substituting Equation (3) into (2), we can

transform the original stencil computation, which is in the

form of the Frobenius inner product, into a vector-matrix-

vector multiplication, like Equation (4):

⟨C,X⟩F =

n
∑

i=1

n
∑

j=1

uixi,jvj = u
TXv (4)

thus, we have obtained a new stencil computation method for

updating a single point at once.

TCUs offers us an opportunity to efficiently compute stencil

for multiple elements simultaneously through tensorization.

Assuming the data size for single tensorized stencil compu-

tational update is m × m, the size of input matrix X then

is (m+ 2h)× (m+ 2h) to satisfy dependencies. The weight

matrix U has dimensions m×(m+2h), and the weight matrix

V is (m + 2h) ×m. The matrices U and V are respectively

derived from expansion of vectors u
T and v. The elements in

U and V are as follows:

ui,j =

{

uj−i+1, i ≤ j ≤ i+ 2h

0, others
(5)

vi,j =

{

vi−j+1, j ≤ i ≤ j + 2h

0, others
(6)

Thus, the vector-matrix-vector product of p-th row of U

(up), matrix X ,and q-th column of V (vq) is the stencil result

at the point (p+h, q+h). Therefore, for a stencil with a weight

matrix of C, its tensor computation can be transformed into

the Matrix Chain Multiplication (MCM) of U , X , and V ,

specifically:

⟨C,X⟩FT = UXV (7)

where ⟨C,X⟩FT represents the tensorized stencil computation

of input X with weight C.

TABLE I: Notation

Notation Definition

W Original weight matrix
C Original/Decomposed rank-1 weight matrix

u/v Rank decomposition vector of matrix C
U/V Weight matrix of vector u/v expansion
X Input data matrix
h Radius of the stencil kernel
n Edge length of the stencil kernel
m Edge length of the data for once tensor calculation
r Rank of original weight matrix W

⟨C,X⟩F Scalar stencil computation of input X with weight C
⟨W,X⟩FT Tensor stencil computation of input X with weight W

2) rank > 1. In case where the rank of the weight matrix

is not equal to 1, let us denote the weight matrix as W

with rank(W ) = r, where r ∈ [1, n]. Based on the SVD

of matrices, W can be decomposed into r matrices each with

a rank = 1. This implies:

W =

r
∑

k=1

Ck =

r
∑

k=1

uk ⊗ v
T

k (8)

Then, we transform the stencil computation of the weight

matrix W into a sum of stencil computations of rank-1 weight

matrices C. By combining this with Equation (7), we can

further transform it to the sum of a series of MCM.

⟨W,X⟩FT =

r
∑

k=1

⟨Ck, X⟩FT =
r

∑

k=1

UkXVk (9)

Hence, the tensorized stencil with a rank-r weight matrix

W can be transformed into the sum of r MCM of U , X , and

V . This transforms the stencil computation pattern from the

Frobenius inner product to the matrix computation on TCUs.

III. LORASTENCIL

In this section, we will provide a detailed introduction to

LoRAStencil, incorporating examples. This includes three key

techniques: Residual Dimension Gathering, Pyramidal Matrix

Adaptation, and Butterfly Vector Swapping.

A. Overview

We begin by providing an overview of the LoRAStencil

for general stencils, as illustrated in Figure 3. Similar to the

mathematical derivation subsection (II-D), we first introduce

the handling of the LoRAStencil for the specific case rank =
1. Subsequently, we extend this discussion to encompass the

general case where rank > 1.
rank = 1. Residual Dimension Gathering (RDG, Sub-

section III-B) transforms rank-1 stencil computations into

MCM on the TCU, thereby addressing the redundant memory

accesses caused by Dimension Residue. Initially, the weight

matrix C is rank-decomposed into the outer product of vectors

{u,v}, these vectors are then mapped onto fragments to

construct the corresponding weight matrices {U, V }. Subse-

quently, by performing RDG on the weight matrices {U, V }
and the input matrix X , the final stencil result is obtained.
rank > 1. Pyramidal Matrix Adaptation (PMA, Sub-

section III-C) is the key technique that extends LoRAStencil

to general stencils, leveraging low-rank properties of weight

matrix to reduce redundant computations. This process splits

W into the sum of rank-1 weight matrices C of decreasing

sizes. Each Ci is then subjected to aforementioned rank-1

process to obtain their respective partial result matrices Pi.

By summing up all Pi, the final stencil result can be obtained.
Butterfly Vector Swapping (BVS, Subsection III-D) is

the core step for achieving efficient MCM on the TCU. By

applying mathematical transformations to the mapping func-

tions, BVS overcomes the challenge posed by TCU hardware’s

natural inefficiency in handling MCM, eliminating redundant

data movement among threads.
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B. Residual Dimension Gathering

In this subsection, we introduce a new stencil computation

method, Residual Dimension Gathering, aimed at maximizing

the reduction of redundant memory accesses across all dimen-

sions.

The development of RDG is predicated upon two key ob-

servations: 1) Through the strategic arrangement of the weight

matrix, it is feasible to gather single-dimensional dependencies

for multiple adjacent points without redundant memory access.

As illustrated in Figure 4(a), the MM of the input matrix

with weight matrix (where green blocks represent weights and

white represent zero) yields horizontal dependencies collection

for three adjacent data sets (represented by purple, orange

and blue, respectively), with horizontal access redundancy-free

during this computation. 2) When the weight matrix is of rank-

1, its dependencies can be transformed into the product of a

column vector and a row vector, as discussed in Section II-D.

This implies that vertical dependencies can be collected first,

followed by the gathering of horizontal dependencies.

Based on above observations, we extend the single-

dimensional non-redundant gathering to all dimensions, result-

ing in RDG. RDG enables redundancy-free gathering across

all dimensions for tensorized stencil computation, including

residual dimension, through MCM. As illustrated in Figure
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tion of LoRAStencil.

4(b), 2D stencil computation for the central segment of matrix

X is accomplished by aggregating dependencies in both ori-

entations through the MCM of weight matrix U , input matrix

X , and weight matrix V (where white blocks represent zero).

RDG Process. Figure 2(c) demonstrates the specific com-

putation process of RDG on TCU using a 7× 7 stencil kernel

as an example, which encompasses two steps: vertical gather

and horizontal gather.

In Step 1, the weight matrix U is multiplied by the input

matrix X , yielding the semi-gather matrix T that aggregates

vertical dependencies. Each element within matrix T is the

cumulative sum of weights u associated with its vertically

adjacent elements. We will introduce the input matrix and the

weight matrix respectively.



The weight matrix U , a 8 × 16 matrix (including 4 frag-

ments), is employed for the vertical gathering of X . In matrix

U , the red and white blocks denote weight and zero elements,

respectively. U originates from the expansion and mapping of

the weight vector u across the 8× 4 fragment. The vector u

serves as the basis column of the weight matrix C, obtained

through the rank decomposition of the rank-1 matrix C, as

illustrated in Figure 4(d). Every row in U contains n non-

zero elements, equivalent to the kernel’s edge length, with the

layout of each row being a one-position rightward shift from

the preceding row. The general construction method for the

weight matrix has been elucidated in Subsection II-D. Here,

we provide the mapping function for a 7× 7 stencil kernel:

ui,j =

{

uj−i, i+ 1 ≤ j ≤ i+ 7

0, others
(10)

where i ∈ [1, 8], j ∈ [1, 16]. Fragments in matrix U that

align in vertical sequence with the horizontal sequence of

matrix X are subject to MMA. The outcomes are subsequently

accumulated at the corresponding positions in a semi-gather

matrix T . This process requires a total of 8 MMA operations.

The input matrix X (depicted in gray) is a 16× 16 square

matrix load from shared memory without redundancy, utilized

to compute stencil results of the central 8 × 8 square. Each

element of X resides within a 4× 8 fragment, as determined

by the right-multiplication with TCU. The dark brown block

within matrix X denotes the first point in the result matrix,

while red blocks indicate dependencies of the dark brown.

In Step 2 of the horizontal gather, dependencies across all

dimensions are collected to yield the final result matrix. This

process is similar to Step 1 and simply involves MM of the

semi-gather matrix T with the weight matrix V to complete

the MCM of U , X , and V . Within T , it is observable that the

vertical dependencies in X are compressed into a single blue

row, leaving only horizontal dependencies to be addressed. In

matrix V , the blue blocks denote the expansion of the weight

vector v, while the white blocks, as in U , represent zero ele-

ments. Since V is required to gather horizontal dependencies,

the weight vector v is arranged vertically within the fragment,

within its layout as specified in Equation (11):

vi,j =

{

vi−j , j + 1 ≤ i ≤ j + 7

0, others
(11)

where i ∈ [1, 16], j ∈ [1, 8]. In Step 2, 4 MMA operations are

conducted, totaling 12 MMA operations required in RDG.

In RDG, MCM is employed to reduce redundant access

across all dimensions, thereby enhancing data reuse. This

method fully capitalizes the characteristics of MM and tensor

data structure, facilitating a seamless integration of stencil

computation with TCU hardware. Furthermore, RDG does

not require data layout transformation, thus circumventing the

necessity to construct redundant matrices in shared memory,

a step that is indispensable in ConvStencil. This reduction

in memory demand enables an increased number of threads

to function concurrently on streaming multiprocessors (SMs),

thereby improving hardware occupancy and parallelism.

Redundancy Reduction Analysis. For the RDG approach,

when performing tensorized stencil computations with a kernel

radius of h, ideally, the size of the matrix updated at once is

2h × 2h, striking a balance between optimal data reuse and

register occupancy. However, due to the limitation of TCU

fragment size 4 × 8 in FP64, there will be at least ⌈2h/8⌉
fragments horizontally and ⌈2h/4⌉ fragments vertically. Thus,

the number of grid points updated at once is 32⌈h/2⌉⌈h/4⌉.

For the a × b input, the computation must be executed
ab

32⌈h/2⌉⌈h/4⌉ times, each load 2⌈2h/8⌉×2⌈2h/4⌉ fragments to

satisfy the dependency. Consequently, the requisite number of

fragments to be loaded from shared memory can be calculated

by Equation (12),

RDG =
ab

8
(12)

While in ConvStencil, to compute 8 × (2h + 2) consecutive

elements, it requires loading 2×⌈(2h+1)2/4⌉ fragments from

shared memory [13]. The total number is calculated by (13),

ConvStencil = 2× ⌈
(2h+ 1)2

4
⌉ × ⌈

a

16(h+ 1)
⌉b (13)

Given the substantial dimensions of a and b, the ratio of

memory access volume between ConvStencil and RDG is

articulated as Equation (14).

ConvStencil

RDG
=

1

h+ 1
⌈
(2h+ 1)2

4
⌉ (14)

In the case of Box-2D49P stencil (where h = 3), the

memory access volume of ConvStencil is 3.25x that of RDG.

This indicates that RDG eliminates 69.23% of redundant

memory accesses in ConvStencil. When h = 4, the redundancy

of ConvStencil escalates to 4.2x that of RDG, with the latter

method eliminating 76.19% of the redundant accesses.

C. Pyramidal Matrix Adaptation

After introducing the RDG computation for the rank-1

weight matrix stencils, the subsequent challenge addressed is

the extension of the aforementioned method to the general

weight matrix W . In Subsection II-D, we have mathematically

derived that: for any weight matrix W with rank(W ) = r, the

stencil result is equivalent to the sum of stencil performed in-

dividually by rank-1 weight matrix Ci, where W =
∑r

i=1 Ci,

as delineated in Equations (9).

Moreover, we observe that stencil weights commonly ex-

hibit radial symmetry in scientific and industrial computations,

as discussed in II-C. The low-rank properties of stencil weights

offer us an opportunity for redundant computation reduction.

Leveraging this characteristic, we propose the Pyramidal

Matrix Adaptation method for efficiently computing general

stencils on TCUs.

In PMA, we leverage the radial symmetry of the stencil

weights to decompose the original W into the sum of pyramid-

shaped rank-1 weight matrices C. As described in II-C, for a

kernel with radius h and side length n = 2h+1, the rank of its
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weight matrix is at most h+1. Here, we assume rank(W ) =
h + 1. By employing matrix elementary transformation, we

can decompose W into h+ 1 rank-1 matrices C.

Figure 5 illustrates the specific process of PMA using

the Box-2D49P stencil as an example, which shows how to

recursively decompose a radially symmetric matrix W into

a sum of rank-1 matrices. In Figure 5, the red matrices

represent the original matrix W and the decomposed radially

symmetric matrices, while the green matrices represent the

rank-1 matrices C obtained from the matrix decomposition.

Firstly, for the original matrix W , we can construct a rank-1

matrix C1, where the i-th row of C1 is wi,1/w1,1×w1,:. Thus,

C1 is the outer product of vector u and vector v, where

u =
1

w1,1
· [w1,1, w2,1, ..., w7,1]

T,v = w1,:

Since W is a radially symmetric matrix, it exhibits both row

and column symmetry. Therefore, v is a symmetric vector, i.e.,

w1,1 = w1,7, w1,2 = w1,6, ...; similarly, u is also a symmetric

vector. Consequently, the rank-1 matrix C1 obtained from the

outer product of u and v is also a radially symmetric matrix.

Additionally, C1 share the same first and last row with W , and

the first and last element of the middle rows of C1 are identical

to those in W . Consequently, the matrix W−C1 yields a 5×5
radially symmetric matrix, as illustrated in Figure 5(1).

Subsequently, applying the aforementioned matrix decom-

position to the W −C1 yields a 5× 5 rank-1 matrix C2 and a

3×3 radially symmetric matrix W −C1−C2. By recursively

executing this process, we can ultimately decompose W into

the sum of rank-1 matrices C1, C2, C3 and C4, where C4 is

a 1 × 1 scalar matrix. Each C can be factorized as the outer

product of vectors {u,v}.

Finally, by applying RDG to each Ci individually with the

input matrix, and subsequently accumulating the partial result

matrix, we can obtain the final result for the stencil with

arbitrary weights. It is noteworthy that the weight matrix C4

comprises solely one point, signifying that the update point is

dependent only on itself, without reliance on its surrounding

neighbors. Thus, no additional MM is required to obtain the

corresponding partial result matrix.

We can generalize the aforementioned process to symmetric

stencils with arbitrary rank. In general, for a radially symmet-

ric matrix W with rank(W ) = h+1, h ∈ N
+, we can use the

PMA method to decompose it into h + 1 rank-1 matrices C
with decreasing dimensions, as illustrated in Equation (15).

W(2h+1)×(2h+1) = (C1)(2h+1)×(2h+1) + · · ·+ (C2h+1)1×1

=
h+1
∑

i=1

(Ci)(2h+3−2i)×(2h+3−2i) (15)

Consequently, by employing PMA, we have extended RDG

to the computation of general kernel stencils. Since the input

matrix utilized for each RDG in PMA remains constant, frag-

ments of input data are amenable to reuse, ensuring that the

PMA process does not introduce redundant memory access.

Quantitative Performance Analysis. In the preceding sec-

tion, we demonstrated the advantage of LoRAStencil in terms

of memory access. Next, we quantitatively analyze the number

of computational instructions (MMA) required.

As mentioned in Subsection III-B, when executing ten-

sorized stencil computation with a kernel radius h, it requires
ab

32⌈h/2⌉⌈h/4⌉ computations, with each involving h RDG oper-

ations. Each RDG involves the MCM of matrix U , X and

V . U × V = T include 2⌈h/2⌉ × 2⌈h/4⌉ MMA, while

T×V involves 2⌈h/2⌉ MMA. Therefore, the number of MMA

operations required by LoRAStencil is given by Equation (16),

LoRAStencil = 2h⌈
h

2
⌉(2⌈

h

4
⌉+ 1)×

ab

32⌈h/2⌉⌈h/4⌉
(16)

While in ConvStencil, there is an absence of fragment reuse,

thus the number of required MMA operations is equivalent

to the count of data load instructions, as delineated in Equa-

tion (13) of Subsection III-B.

In Box-2D49P stencil (h = 3), the ratio of the number

of MMA operations required by LoRAStencil to ConvStencil

is 36/26, approximately 1.38. Compared to the significantly

reduced memory accesses, the increase in computational work-

load is small. The denser computation also allows the TCU

computational power to be more fully exploited, which has

not yet reached its bottleneck. Experimental results further

demonstrate our superior performance.

D. Butterfly Vector Swapping

Through the PMA and RDG method, LoRAStencil can

efficiently perform tensor computations for general stencil ker-

nels. However, the core operation of RDG is MCM, which is
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Fig. 6: Fragment Layout on TCU and Butterfly Vector Swap-

ping of LoRAStencil. The same color indicates data residing

in the same register across different threads.

not natively supported by WMMA interfaces. Worse still, due

to its unique layout within fragments at FP64 precision, the

accumulator matrix obtained after MMA operations cannot be

directly used for subsequent MMA. Additional data movement

is required to execute MCM, which impedes the computational

process and becomes the critical bottleneck for performance.

To achieve efficient MCM, we propose the Butterfly Vector

Swapping method to address the issue through mathematical

equivalent transformation.

In TCU MMA operations, the matrix size and data layout

are strictly defined. For instance, in FP64 precision, the left-

multiplied, right-multiplied and accumulator matrix are stored

in fragments A, B and C with dimensions 8×4, 4×8 and 8×8,

respectively. As WMMA operations are executed at the warp

level, with each warp comprises 32 threads, each thread holds

1 element from fragment A and B. Similarly, each thread holds

2 elements from fragment C, stored in register 0 (R0) and

register 1 (R1), for ease of reference. The layout of elements

in the fragment and their corresponding thread registers is

illustrated in Figure 6(a), where R0 and R1 are indicated by

blue and green blocks, respectively. It can be observed that

two consecutive elements ({(0, 0), (0, 1)}) in C are stored

within the same thread (T0). To perform MM, we need to

split fragment C into two fragments A. However, the direct

mathematical partitioning of fragment C (1 ∼ 4 columns and

5 ∼ 8 columns form two fragment A, respectively) introduces

shuffle operations among threads. For instance, transferring the

first green column from R1 of threads {0, 4, .., 28} to R0 of

threads {1, 5, ..., 29} (like the layout in fragment A) introduces

inter-thread shuffling and impedes computation.

We address this issue by mathematically butterfly-swapping

the rows of the right-multiplied matrix at the vector level. As

shown in Figure 6(b), when performing horizontal gather (T×
V ), the layout of T does not support MM, and directly splitting

T , as discussed earlier, would introduce inter-thread shuffling.

By observing the MM, we note that when the columns in T
and the rows in V undergo the same order of vector swapping,

the result remains unchanged, as shown in Equation (17),

n
∑

k=1

tkv
T

k =[· · · ti · · · tj · · · ]× [· · ·vT

i · · ·vT

j · · · ]T

=[· · · tj · · · ti · · · ]× [· · ·vT

j · · ·vT

i · · · ]T
(17)

where

ti = [t1,i, t2,i, ..., tn,i]
T,vi = [vi,1, vi,2, ..., vi,n]

T

respectively denote the column and row vector of T and V .

Thus, we can directly use elements located in the same

register within T (same color) to construct fragment A, while

performing the corresponding butterfly-row-vector swapping

in weight matrix V . Specifically, since the columns {1, 3, 5, 7}
of matrix T form the first four columns (fragment A) of T ′,

it suffices to map the rows {1, 3, 5, 7} of matrix V to the first

four rows (fragment B) of V ′ to ensure TV = T ′V ′. As illus-

trated in Figure 6(b), constructing the left-multiplied fragment

T ′ is achievable without inter-thread shuffling, and when mul-

tiplied with the corresponding butterfly-row-swapping right-

multiplied fragment V ′, it accomplishes the MCM in RDG.

This transformation only requires modifying the mapping

function from the weight vector v to matrix V ′ (fragment

B), without introducing additional physical data movement or

computational operations, thereby circumventing data shuf-

fling among threads. Following this optimization, we over-

come the hardware design challenge with RDG, achieving

efficient MCM operations on TCU.

IV. OPTIMIZATION

A. Kernel Fusion

LoRAStencil can be applied to any stencil kernel. However,

due to the limitations of fragment size, some small kernels

struggle to effectively utilize TCU. Therefore, we temporally

fuse some kernels to enhance computation within TCUs. For

instance, in Figure 7, updating an 8×8 matrix (orange squares)

requires loading eight 4×8 fragments. Box-2D9P only utilizes

10×10 green elements, wasting the outer three rows/columns

of gray elements. By temporally 3x fusing it into Box-2D49P,

we can reduce fragment storage waste by 96/156 ≈ 61.54%,

thereby improving the utilization of TCUs.

B. Asynchronous Data Copy

Before loading data from shared memory into the frag-

ment, it necessitates the data copy from global memory

to shared memory. Direct data copy introduces register oc-

cupancy, signifying that data must traverse through global

memory, registers, and then shared memory. Fortunately, the

Ampere architecture introduces asynchronous feature from
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global memory to shared memory, which circumvents the

overhead of transferring data through registers and is beneficial

in saving the usage of intermediate registers [35]. Therefore,

we efficiently accomplish data copy from global memory

to shared memory by employing the cp.async instruction

through PTX (Parallel Thread Execution) embedded assembly.

C. Generalization

After introducing 2D LoRAStencil, it can be straightfor-

wardly generalized to other dimensions. For 1D stencil, as it

only has dependency in a single dimension, one MM suffices

to complete the gathering process. There is no redundancy in

dimension orthogonal to the update direction, hence MCM is

unnecessary.

LoRAStencil can be mathematically extended to support

higher-dimensional tensor architectures with ease. For 3D

stencil, since TCU fragments physically only support two

dimensions and do not support 3D data storage and compu-

tation operations, we decompose the 3D stencil into multiple

2D planes and perform LoRAStencil computations on each

plane. For planes with a single weight in 3D star-type stencils,

we utilize CUDA cores for computation, providing more

opportunities for parallel utilization of both computing units

on the GPU.

Algorithm 2 The 3D Algorithm of LoRAStencil.

Input: h : radius of the stencil kernel, A1, ..., A2h+1 : input data of plane
{1, ..., 2h+1}, W1, ...,W2h+1 : weight matrix of plane {1, ..., 2h+1}

Output: B : output matrix of 3D stencil
1: function LORASTENCIL3D
2: for i← 1 to 2h+ 1 do

3: if Wi contain only one weight then

4: // CUDA Core for Point-Wise Computation

5: B += CUDACORECOMPUTE(Ai,Wi)
6: else

7: // Tensor Core for 2D LoRAStencil

8: B += TENSORCORECOMPUTE(Ai,Wi)
9: end if

10: end for

11: end function

Algorithm 2 illustrates the 3D stencil computation process

of LoRAStencil. A 3D stencil kernel with a radius h can be

viewed as the superposition of 2h+1 2D planes. When the i-th
plane contains only a single weight, it indicates that there is no

dependency collection from other neighboring points in that

layer. Consequently, we can utilize CUDA Cores to perform

direct point-wise multiplication and accumulation operations

on the data and the corresponding weight. Conversely, when

the i-th plane requires multiple dependency points, Tensor

Cores are employed to execute matrix computations, specifi-

cally the 2D LoRAStencil calculations. Notably, for a regular

3D stencil, each plane represents a star-shaped or box-shaped

2D stencil. Therefore, when the plane contains more than

one grid point, it includes at least five points (star-2D5P),

necessitating the use of TCUs for 2D LoRAStencil. Finally,

by aggregating the results of these 2h + 1 planes, we obtain

the 3D stencil result for the h-th layer.

V. EVALUATION

A. Experimental Setup

Machine. Our experimental platform comprises an AMD

EPYC 7V13 processor and an NVIDIA A100 Tensor Core

GPU. The A100 GPU is configured with 80GB of HBM2e

memory, featuring a 5120-bit memory interface width, and

offers a memory bandwidth of 1935GB/s. The A100 GPU is

equipped with 108 SMs, each containing 4 Tensor Cores. The

TCUs deliver a peak FP64 performance of 19.5 TFLOPS.

State-of-the-arts. We compare LoRAStencil with vari-

ous state-of-the-arts for a comprehensive analysis, including

cuDNN [14, 15], AMOS [20], Brick [16–18], DRStencil [19],

TCStencil [21] and ConvStencil [13].

cuDNN and AMOS represent advanced endeavors in the

computation of convolutions. Given that convolutions and

stencils share an intrinsic similarity in the computational

patterns, a comparison with these benchmarks is undertaken.

Notably, the design of TCStencil is specifically tailored

for computation on TCUs at FP16 precision. Given that the

TCStencil algorithm design on specific fragments, and the

size and shape of fragments at FP16 and FP64 differ on the

TCU, it is not feasible to directly convert TCStencil to FP64

precision. For this scenario, we adopt the same analysis as in

ConvStencil [13]. On the A100 TCU, FP16 computation speed

is 16 times faster than FP64. And under the same memory

bandwidth, FP16 read/write speed is 4 times faster than FP64.

Hence, in the best-case scenario, the speed of TCStencil in

FP64 would be a quarter of FP16. Therefore, in our evaluation,

we divide the TCStencil speed by 4 for comparison.

ConvStencil performs 3x temporal fusion for small kernels,

a technique equally employed in LoRAStencil. Therefore,

LoRAStencil does not gain an unfair advantage in this respect.

Thus, through performance comparison with ConvStencil,

there is no need to further elucidate whether the performance

edge of LoRAStencil is attributable to kernel fusion.

Benchmarks. We use various stencil kernels with different

shapes as benchmarks. The specifics are detailed in Table II,

including five star kernels (Heat-1D, 1D5P, Heat-2D, Star-

2D13P, and Heat-3D) and three box kernels (Box-2D9P, Box-

2D49P, and Box-3D27P), sourced from [13, 29].

Metrics. Most work on stencil evaluate performance using

GStencil/s (Gigastencils per second, denoting the number of



Fig. 8: Performance comparison of LoRAStencil with state-of-the-art approaches on GPU and TCU. LoRAStencil-Best

represents the performance of LoRAStencil when the original weight matrix is a rank-1 matrix.

stencil points updated per second) as a metric. We also adopt

this metric, as defined in Equation (18)

GStencil/s =
T ×

∏n
i=1 Ni

t× 109
(18)

where T denotes the number of iterations, n denotes the

dimensionality of the stencil, Ni denotes the size of the i-th
dimension, and t denotes the total execution time in seconds.

B. State-of-the-art Comparison

Figure 8 illustrates the performance comparison of LoRAS-

tencil with all state-of-the-arts, where the left and right vertical

axes represent absolute performance and relative speedup,

respectively. The speedup value for each method is calculated

relative to the lowest-performing method in that kernel. It is

evident that LoRAStencil demonstrates significantly improved

performance compared to all reference works.

It can be observed that all works optimized for stencil

outperform cuDNN and AMOS. This is attributed to the lack

of specialized optimizations for stencil within both cuDNN

and AMOS frameworks. Additionally, cuDNN does not em-

ploy TCU for acceleration, while although AMOS utilizes

TCU, it does not optimize the mapping from stencil to TCU,

squandering a significant portion of computational power.

Compared to cuDNN and AMOS, LoRAStencil achieves an

average speedup of 20.11x and 14.45x, respectively.

In works tailored optimized for stencils, LoRAStencil also

exhibits significant performance improvements. Compared to

Brick, DRStencil, and TCStencil, LoRAStencil achieves an

average performance acceleration of 5.54x, 2.82x, and 2.48x,

respectively. Compared to the state-of-the-art ConvStencil,

LoRAStencil improves the performance sustainably by 1.12x

TABLE II: Configuration for Stencil Benchmarks

Kernel Points Problem Size Blocking Size

Heat-1D 3 10240000× 10000 1024

1D5P 5 10240000× 10000 1024

Heat-2D 5 10240× 10240× 10240 32× 64

Box-2D9P 9 10240× 10240× 10240 32× 64

Star-2D13P 13 10240× 10240× 10240 32× 64

Box-2D49P 49 10240× 10240× 10240 32× 64

Heat-3D 7 1024× 1024× 1024× 1024 8× 64

Box-3D27P 27 1024× 1024× 1024× 1024 8× 64
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Fig. 9: Performance breakdown of LoRAStencil.

on minimum, 2.16x on maximum and 1.37x on average.

Notably, in 3D, the performance improvement is particularly

pronounced. This is attributed to the implementation of Lo-

RAStencil, which is not constrained by kernel size, meaning

that it maintains high utilization of TCU fragments even with

small kernels, and can update multiple grid points at once. In

contrast, ConvStencil suffers from poor fragment utilization

with small kernels due to the specific matrix construction

of the algorithm, and can only update fewer grid points at

once calculation. Consequently, ConvStencil is compelled to

undertake a 3x temporal fusion in 3D, which greatly increases

the number of dependencies. This exacerbates memory-bound

characteristics, issues such as register overflow and insufficient

shared memory become more severe, while also introducing

excessive computational overhead, severely limiting perfor-

mance.

C. Performance Breakdown

In this subsection, we investigate how LoRAStencil benefits

from different optimizations. Figure 9 illustrates the perfor-

mance improvements afforded by each optimization method,

taking the typical kernel Box-2D9P as an example.

As depicted in Figure 9, the contributions of different

optimizations gradually stabilize with increasing input size.

Compared to the direct use of RDG in CUDA Cores, the

introduction of Tensor Cores leads to a performance enhance-
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memory between ConvStencil and LoRAStencil.

ment of 2.14x. This improvement is attributed to the powerful

MM capabilities of TCU. Subsequently, we employed BVS

to eliminate inter-thread shuffle operations introduced during

MCM. It is evident that this strategy led to a significant

performance leap, achieving a 4.00x speedup. This indicates

that inter-thread shuffling is a critical bottleneck in previous

implementation, and BVS effectively addresses this issue

mathematically, reducing computational bubbles and facili-

tating efficient MCM. Finally, we introduced asynchronous

copy (AC) operations, eliminating the reliance on intermediate

registers, resulting in a performance gain of 29.7%. With this,

we have completed all optimizations in LoRAStencil.

D. Memory and Compute Comparison with ConvStencil

In this subsection, we will conduct a more detailed compar-

ison with ConvStencil in terms of memory and computation

to illustrate the effectiveness and superiority of the approach.

We exemplify our analysis by four representative kernels,

Star2D13P, Box2D49P, Heat3D and Box3D27P, which across

different dimensions. Figure 10 shows the actual shared mem-

ory loads, stores and total requests during computation by all

warps, as measured by Nsight Compute [36].

LoRAStencil significantly reduces the number of shared

memory load requests, with the average decreasing to 19.1%

TABLE III: Compute comparison to ConvStencil.

Kernel Box-2D49P Box-3D27P

Metrics CT1 AI2 CT AI

ConvStencil 69.97% 3.59 36.88% 1.65
LoRAStencil 86.42% 7.41 49.31% 2.53

1 CT denotes the Compute (SM) Throughput percentage
2 AI denotes the Arithmetic Intensity (FLOP/byte).

of ConvStencil. This substantial reduction in redundant frag-

ment loads can be attributed to two main factors. Firstly, the

RDG approach diminishes the redundant loads in the residual

dimension. Secondly, the computational pattern of LoRAS-

tencil facilitates extensive reuse of registers in warp, further

minimizing the necessity for repeated memory accesses.

Regarding shared stores, which refer to the instructions

for copying data from global memory to shared memory, the

number of store requests in LoRAStencil averages at 47.0%
of that in ConvStencil. This efficiency is attributed to Lo-

RAStencil’s elimination of the need for additional data layout

transformation, which ConvStencil requires for constructing

two stencil2row matrices. These matrices occupy more shared

memory, reducing the maximum number of threads that can

work simultaneously and thus lowering the hardware occu-

pancy. The total number of requests is reduced by 76.6% in

LoRAStencil compared to ConvStencil.

Table III shows the comparison of the computational

throughput (CT) and arithmetic intensity (AI). The throughput

reports the achieved percentage of utilization with respect

to the theoretical maximum, and AI denotes the amount

of computation accomplished per data access. LoRAStencil

exhibits an enhancement in both the utilization of TCU and

AI, enabling closer to the peak performance capabilities of the

hardware.

VI. RELATED WORK

Optimization research on stencil computation has been

extensively studied [2, 3]. Representative works can largely

be categorized into two directions based on architecture.

On CPU, vectorization is a crucial pathway to enhancing

computational performance [12, 22, 37, 38]. Data Layout

Transformation (DLT) [24, 39], stands as a milestone, adeptly

addressing the data alignment conflicts introduced during

SIMD instruction computations. Utilizing stencil computing

features to enhance data reuse has also been a subject of

numerous studies [26, 40, 41]. Blocking, or tiling, is a pow-

erful technique to enhance data locality and facilitate cache

reuse [42–45]. Representative tiling techniques in stencil work

include rectangle tiling [23, 46, 47], time skewing [48–50],

diamond tiling [29, 51, 52], cache-oblivious tiling [11, 53],

and tessellating tiling [54].

On GPU, stencil optimization has also been widely re-

searched [55–58]. Tiling on GPUs includes spatial tiling [17,

59, 60] and temporal tiling [61–63]. Other stencil optimiza-

tions include prefetching [64], unrolling [65], and stream-

ing [66]. Brick [16–18], by capitalizing on data reuse within

fine-grained blocks of stencil computations, reduces prefetch-

ing and cache pressure, proposing a universal framework

across CPU and GPU. DRStencil [19] accelerates low-order

stencil computations through the fusion-partition optimiza-

tion techniques and implements an effective code generation

framework. These works are all aimed at optimization for

CUDA cores. As tailored for TCU stencil optimization, to

our knowledge, only TCStencil [21] and ConvStencil [13]

exist. TCStencil pioneers in mapping stencil computation to



hardware-accelerated matrix computation, but is limited to

FP16 precision and is plagued by dimension residue. Con-

vStencil combines the similarities between convolution and

stencil, forging a bridge between HPC and deep learning.

However, it also fails to address dimension residue and incurs

additional memory overhead.

VII. CONCLUSION

This paper proposes LoRAStencil, a stencil computing sys-

tem designed to mitigate memory access redundancy on TCUs

through low-rank adaptation. It comprises Residual Dimension

Gathering, Pyramidal Matrix Adaptation and Butterfly Vector

Swapping, adeptly addressing the issue of Dimension Residue.

The experiment results show that LoRAStencil outperforms

state-of-the-arts with promising performance speedup.
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