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Abstract—The adaptation of pre-trained large language models
(LLMs) to diverse downstream tasks via fine-tuning is critical for
numerous applications. However, the inefficiency of parameter-
efficient fine-tuning (PEFT) techniques presents significant chal-
lenges in terms of time investments and operational costs. In this
paper, we first introduce a nuanced form of sparsity, termed
Shadowy Sparsity, which is distinctive in fine-tuning and has
not been adequately addressed for acceleration. Under Shadowy
Sparsity, we propose LONG EXPOSURE', an efficient system to
accelerate PEFT for LLMs. LONG EXPOSURE comprises three
key components: Shadowy-sparsity Exposer employs a prolonged
sensing range to capture more sparsity details under shadowy
sparsity; Sequence-oriented Predictor provides efficient yet accu-
rate predictions to handle large sequence inputs and constantly-
evolving parameters; and Dynamic-aware Operator facilitates
more structured computational patterns and coalesced memory
accesses, addressing dynamic sparse operations. Extensive evalu-
ations show that LONG EXPOSURE outperforms state-of-the-arts
with up to a 2.49x speedup in end-to-end fine-tuning, offering
promising advancements in accelerating PEFT for LLMs.
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I. INTRODUCTION

In natural language processing, the adaptation of pre-trained
large language models (LLMs) [1]-[5] to diverse downstream
tasks constitutes a fundamental aspect of many applications.
This adaptation process, commonly known as fine-tuning,
involves the comprehensive update of all parameters within
the pre-trained model akin to training from scratch.

For the potential hundreds of thousands of downstream
applications that rely on LLMs, the efficiency of fine-tuning
directly affects their operational costs and time investments.
Given that pre-trained LLMs need periodic updates, typically
every few months, to integrate the latest knowledge, there is a
pressing demand for accelerating the LLM fine-tuning process.

The major reason hindering the fine-tuning efficiency is
the retention of the same number of parameters in the new
model as in the original one. Efforts have been made to
address this concern by introducing parameter-efficient fine-
tuning (PEFT) techniques [10], which only selects or injects
a minimal number of parameters for adaption to new tasks.
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TABLE I: OPT-1.3B fine-tuning time breakdown. (ms/batch)

Phase Forward Backward Optim. Step  Total
Full Param. 112.8(27.7%)  223.7(54.9%) 70.6(17.3%) 407.2
LoRA [6] 135.3(40.4%) 196.3(58.7%) 2.0(0.6%) 334.6
Adapter [7] 123.6(42.2%) 168.4(57.5%) 0.7(0.3%) 292.9
Bitfit [8] 117.6(40.5%) 172.4(59.4%) 0.2(0.07%) 290.3
P-Tuning [9] 137.5(40.1%) 193.9(56.6%) 11.1(3.2%) 342.6

One prominent approach in the domain of PEFT is low-rank
adaption (LoRA) [6]. It freezes pre-trained model weights and
injects smaller, trainable low-rank matrices into each trans-
former block. Compared to full fine-tuning, LoRA decreases
the number of trainable parameters to less than 0.01%.

This substantial reduction in the number of trainable param-
eters mitigates the need for maintaining and updating the op-
timizer states for most parameters. However, PEFT techniques
fall short of achieving an expected decrease in wall-clock
time. As detailed in Table I, even with minimal parameters
being trainable, techniques like LoRA only experience an
18% reduction in wall-clock time. While PEFT techniques
notably cut down the optimization step’s wall-clock time,
they leave the duration of the forward and backward passes
either unchanged or slightly increased. This is because, despite
most pre-trained parameters being frozen, computing gradients
for trainable parameters still requires complete forward and
backward passes through the backbone model. Consequently,
the forward and backward passes have emerged as the com-
putational bottlenecks impeding further acceleration.

In this paper, we propose LONG EXPOSURE?, an efficient
system to accelerate parameter-efficient fine-tuning for LLMs.
The design of LONG EXPOSURE is grounded in a crucial
observation that PEFT and inference in LLMs exhibit high
similarities in their computation patterns. In PEFT techniques,
a majority of model parameters remain frozen, similar to the
scenario in model inference where parameters also stay unal-
tered. Previous studies [11]-[23] have evidenced that LLMs
typically exhibit considerable sparsity, with a great number
of activations can be excluded from computation to expedite
inference in wall-clock time while preserving quality. Guided

2Similar to employing a slow shutter speed in photography to capture more
light for producing clearer images, this paper adopts a series of granular
techniques to expose and leverage more sparsity for accelerating fine-tuning.
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Fig. 1: Shadowy sparsity in LLM fine-tuning. Transformer-
based models are generally composed of two primary com-
ponents: multi-head attention and MLP block. In fine-tuning,
the sparse patterns of various tokens within the input sequence
exhibit a logical AND relationship, which restricts the sparsity
degree and leads to computational waste in both components.

by this observation, the key insight of LONG EXPOSURE is
inspired: given the striking similarities in computation patterns
between PEFT and inference, why not build a bridge to PEFT
acceleration by capturing intrinsic sparsity like inference?

However, this is not a low-hanging fruit, as the sparsity
inherent in fine-tuning introduces distinct characteristics that
diverge significantly from those encountered during inference.
In inference, the model typically processes one token at a time,
where the sparse pattern is easily discernible for each token.
In contrast, fine-tuning involves feeding the model with a
sequence of tokens, where the sparsity patterns heavily overlap
across different tokens, as depicted in Figure 1. We coin this
intricate sparsity observed in fine-tuning as Shadowy Sparsity.
To accelerate PEFT for LLMs under this shadowy sparsity,
several key technical challenges must be tackled carefully.

Firstly, how to capture more sparse patterns under shadowy
sparsity. As illustrated in Figure 1, the sparse pattern of
the input token sequence emerges from the logical AND
combination of the sparse patterns of individual tokens in the
sequence. This means that the dense units for a specific token
might coincide with the sparse units for another token. The
resulting shadowy sparsity exhibits a limited level of overall
sparsity, despite the high sparsity degree of each token, leading
to potential computational waste.

Secondly, upon capturing sparsity, the subsequent critical
challenge lies in how to predict efficient yet accurate sparse
patterns to minimize associated computational expenses be-
fore incurring actual costs. Due to the exact sparse patterns
typically varying with different inputs, a commonly employed
method in inference is to utilize neural networks for predicting

sparse patterns at runtime [19]-[22]. However, directly flatten-
ing the token sequence in fine-tuning as network inputs could
lead to an excessively large network, which is both memory-
intensive and time-consuming. Moreover, the continuously-
evolving trainable parameters during fine-tuning also add
complexity to ensuring the correctness of the prediction.

Thirdly, how to achieve effective performance improvements
based on well-predicted sparsity. The irregular computation
patterns and scattered memory accesses associated with spar-
sity make it challenging to attain comparable performance im-
provements to the theoretical computation reductions. More-
over, these well-predicted sparsity patterns exhibit highly dy-
namic characteristics that vary with different inputs at runtime.
This renders many existing tools ineffective in capturing and
handling such dynamic variations.

LoNG EXPOSURE employs a suite of techniques to address
these challenges. The concept of ‘LONG EXPOSURE’ empha-
sizes that rather than simply harnessing the limited sparsity
remaining in shadowy sparsity, we take a longer view which
captures more intricate details of individual sparse pattern
before they fade into shadow. The core of LONG EXPOSURE
is the Shadowy-sparsity Exposer, a technique designed for ex-
posing the latent sparsity hidden in shadowy sparsity. In multi-
head attention, we introduce specific sparse patterns tailored
to each attention head, avoiding the computational redundancy
or oversight that can arise from employing a uniform mask. In
MLP block, we take the importance of each activated neuron
into consideration. By identifying and filtering out neurons
whose activation can be safely disregarded, we transform
shadowy sparsity into structured block-wise sparsity.

LONG EXPOSURE utilizes Sequence-oriented Predictors to
address the conflicts between long sequence inputs and the
associated neural network size. This technique is grounded in
a two-stage design strategy: Initially, the predictor processes
each token individually; then these predictions are subse-
quently consolidated. Moreover, to minimize the disruption
caused by updating trainable parameters, we introduce specific
training optimizations to bolster the predictor’s robustness.

LoNG EXPOSURE develops a collection of Dynamic-aware
Operators to facilitate practical acceleration on hardware sys-
tems, covering all the sparse operations involved in multi-head
attention and MLP block. Different from most existing tools,
these operators avoid additional data conversion overhead,
making them well-suited for dynamic scenarios. In addition,
we design a two-stage algorithm for multi-head attention that
adeptly balances precomputation with dynamic sparse patterns.

We evaluate LONG EXPOSURE across various PEFT meth-
ods and on two different GPU platforms. The results show that
our system achieves up to 2.49x speedup and 2.77x memory
savings in end-to-end fine-tuning compared with the state-of-
the-art fine-tuning system, maintaining model accuracy.

In summary, our contributions are as follows:

« We are the first to identify and leverage the intrinsic spar-

sity within LLM fine-tuning, namely shadowy sparsity, to
accelerate the PEFT process for LLMs.



« We introduce three key components that capture, predict,
and exploit sparsity patterns, respectively. This approach
provides a coherent strategy for optimizing both the
multi-head attention and the MLP block within LLMs.

« We implement these techniques as an end-to-end fine-
tuning system that is compatible with a variety of PEFT
techniques. Our system achieves up to 2.49x speedups
and 2.77x memory savings compared to the state-of-arts.

II. BACKGROUND AND MOTIVATION
A. Parameter-efficient Fine-tuning (PEFT)

Adapting a large pre-trained language model for various
downstream applications typically involves full fine-tuning,
where all parameters of the pre-trained model are updated.
However, as models grow in size, full fine-tuning has evolved
from being inconvenient to almost impractical. To reduce the
costs associated with full fine-tuning, various PEFT methods
have emerged in recent years. The central concept behind
these methods is to avoid updates of the full set of parameters
without performance degradation.

A promising direction within PEFT involves freezing the
pre-trained model’s parameters while introducing a small
number of new trainable parameters. One such method [7],
[24], [25] involves the use of adapters, which are addi-
tional layers inserted between the model’s existing layers.
Specially, Low-Rank Adaptation (LoRA) [6] injects trainable
low-rank matrices into each layer, reflecting the insight that
the updates to model weights actually operate within a low
intrinsic dimension. Other methods [9], [26] use prompts,
adding trainable parameters to the model’s input to leverage
the pre-trained model’s existing knowledge for new tasks.
Instead of introducing new parameters, some methods [8], [27]
selectively update a small portion of the pre-trained model’s
parameters, such as only the bias terms [8]. However, owing
to the inherent computational flow of backpropagation, the
significant reduction of trainable parameters provided by PEFT
primarily benefits the optimizer step, leaving the forward and
backward phases as the new bottlenecks.

B. Sparsity in LLMs

A significant number of activations within both two primary
components of transformer-based LLMs: the multi-head atten-
tion and the MLP block, are found zero or nearly zero [23],
[28]. These negligible activations can be disregarded with no
or little impact, leading to sparsity in model’s computational
demands. In multi-head attention, sparsity typically emerges
from the limited interactions among different tokens. Models
can selectively mask out irrelevant tokens, leading to less com-
putation without accuracy degradation. In MLP block, sparsity
is primarily attributed to the properties of the ReLU activation
function, which is increasingly utilized by many LLMs [4],
[29], [30]. This function sets all negative activation values to
zero, allowing them to be excluded from computations.

This inherent sparsity inspires us to leverage it for ex-
pediting the parameter-efficient fine-tuning of LLMs. Unlike
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Fig. 2: An illustrated example of LoRA for showcasing the
computational flow (forward and backward) in PEFT.

the original model training, the entire parameters of pre-
trained model are frozen during PEFT. This allows for accurate
predictions of sparse patterns in both multi-head attention and
MLP block, surpassing the limitations of pre-defined sparse
attention masks [14]-[18], which may not be suitable for
all inputs. Although some research [20]-[22] has employed
similar techniques to accelerate LLM inference, the unique
characteristics of sparsity during fine-tuning present substan-
tially different challenges. To our knowledge, no research has
utilized this sparsity to accelerate the fine-tuning process.

C. Analysis: PEFT Computational Cost Breakdown

Fine-tuning a pre-trained model with trainable parameters
consists of three phases: (1) the forward phase calculates the
loss for current data batch; (2) the backward phase calculates
the gradients of the trainable parameters; (3) the optimizer step
updates the trainable parameters using these gradients.

Consider the use of LoRA to fine-tune an MLP block with
alternating linear and activation layers, as shown in Figure 2.
The ith linear layer consists of weight W;, LoRA matrices
A; and B;, and the ith activation layer is o;. For ith layer,
we denote the output of ¢th linear layer as z;, and the output
following activation as a;.

During the forward phase, the computational costs of PEFT
are either unchanged or slightly increased. Taking our LoRA
example, the output of <th linear layer is computed as follows:

a; = O'i(Zi)

Compared to the original process, the injected LoORA matrices
A; and B; slightly increase the computational costs.

During the backward phase, the situation is more complex.
In backpropagation with loss L of full fine-tuning, the LoRA
matrices A; and B; are absent, and the gradient for the
trainable weight W, is:

oL o oL 8ai 8z,




In contrast, when using LoRA, the gradients relative to the
trainable parameters A; and B; are:

9A; — a; 0z 0B;A; DA,
831‘ n Bai 8z1- 8B1AZ 8B1-
Though using LoRA can skip the calculation of aa‘fl}{, it
. . 0. i BBiAi o) % BéiAi
introduces the calculations of 8Bf 4, - and 8Bf 458,
instead. Given that the computational costs of E?I/ZV are compa-
rable to ag,%k-’ LoRA leads to additional computational steps
involving % and %. Apart from these differences, the

remaining computational costs are essentially equivalent as a
result of the chain rule, which both require traversing the layers
of the extensive pre-trained model.

In the optimizer step, the computational costs of PEFT are
reduced due to fewer trainable parameters. However, the extent
of this saving can vary depending on the choice of optimizer
and typically accounts for a small fraction of the overall. In
summary, PEFT methods do not reduce the computational cost
significantly compared to full fine-tuning.

D. Opportunity: Accelerate PEFT with LLM Sparsity

The application of PEFT techniques has greatly cut down
the cost of the optimizer update phase, turning the forward and
backward phases into new bottlenecks. Unlike standard fine-
tuning or training, where model parameters are continuously
updated through iterations, PEFT techniques maintain most of
the parameters frozen. This closely mirrors the computational
pattern observed during inference. Given that sparsity is com-
monly employed to diminish computational expenses during
inference, there is a compelling opportunity to apply sparsity
to streamline the fine-tuning as well. However, fine-tuning
inherently involves both the forward and backward phases,
while inference is limited to the forward phase. To successfully
adopt sparsity in fine-tuning, it is necessary to analyze how
sparsity impacts the backward phase.

Considering the same example shown in Figure 2, the output
of the ith linear layer can be expressed as follows, with W,
denoting the ith row of W:

z=Waz+ BAz = (W + AW)z
— (W + AWz, ., (W + AWz, . (Wy + AWg)a) "

To incorporate sparsity, we suppose z; = (W;+AW;)z < 0
and set the activation function as ReLU. Consequently, WW; is
inactivated and the activation can be expressed as:

a=ReLU(z) = (Wi + AWz, ...,0,...,(Wa+ AWy)z)"

In backpropagation, the gradient relative to z can be ex-
pressed as:
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Fig. 3: LONG EXPOSURE overview

To calculate the gradients relative to the trainable parameters
A; and B; for updating LoRA matrices, we first calculate the
gradient relative to their product:

oL oL
=
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This gradient does not involve oz implying that no cor-
responding W; is involved either. It leads to an important
conclusion: if certain model parameters remain inactive dur-
ing the forward phase, they are effectively excluded from the
gradient computation in the backward phase. This conclusion
highlights the potential for leveraging sparsity to decrease the
computational demands of PEFT, analogous to the efficiencies
observed during inference.

III. OVERVIEW

We propose LONG EXPOSURE, an efficient fine-tuning
system with LLM instinctive sparsity. Beyond prior works that
concentrate exclusively on either parameter-efficiency during
fine-tuning or computation-efficiency during inference, LONG
EXPOSURE is efficient on aspects of both parameter and
computation. Figure 3 presents an overview of our system.
Shadowy-sparsity Exposer (Section IV). Drawing from our
experimental findings, we present several key observations of
LLM sparsity in fine-tuning. Different from inference, the
sparse patterns in fine-tuning are heavily overlapping across
different tokens. We refer to this as Shadowy Sparsity. To
expose the latent sparse patterns inherent in shadowy sparsity,
we adopt a more granular approach. In multi-head attention,
we consider the unique features of each head and employ a



head-specific sparse mask. In MLP block, we factor in the
importance of activated neurons and introduce a neuron-filter
to transform shadowy sparsity into block-wise sparsity.
Sequence-oriented Predictor (Section V). LONG EXPOSURE
employs neural-network-based predictors to determine the
desired sparse patterns at runtime. In multi-head attention, the
goal is to predict the sparse mask for each head. In MLP block,
the prediction targets the neurons that are activated in the
model weights. To control the size of predictors, we initially
process each token in the sequence individually and then
combine the outputs. Data argument techniques and tailored
loss metrics are introduced to increase predictor accuracy in
the presence of trainable parameters during fine-tuning.
Dynamic-aware Operator (Section VI). LONG EXPOSURE
integrates a suite of dynamic-aware operators that make effi-
cient use of predicted sparse patterns. In multi-head attention,
each head is associated with a distinct sparse pattern, which
necessitates two sparse matrix multiplications. We design a
two-stage algorithm that shifts the bulk of the data format
conversion overhead in matrix multiplication to pre-runtime,
while still meeting the dynamic nature of sparse patterns. In
MLP block, model parameters are activated either by row or
by column, i.e. a neuron. We optimize the standard block-wise
matrix multiplication by taking into account the neuron-wise
sparse pattern. Additionally, we optimize the data layout to
enhance memory coalescing.

IV. SHADOWY-SPARSITY EXPOSER

A. Observation: Shadowy Sparsity

Many studies [11]-[13], [19], [28] have highlighted the
inherent sparsity found in LLMs. Moreover, the sparsity within
LLM is dynamic, indicating that the sparse patterns change
with different inputs. Most of the existing works [20]-[22]
concentrate on model inference, where the model input during
decoding is a single token (sequence length is 1). However,
we observe a distinct characteristic of sparsity during LLM
fine-tuning, where the input is a sequence of tokens.
Multi-head Attention. Figure 4(a) shows the attention scores
across different heads for an example token. The sparsity
in multi-head attention during inference is characterized as
certain heads giving heavy attention scores while others are
rather uniform. This pattern offers an opportunity to selectively
focus on those ‘heavy hitter’ heads while disregarding the rest.
However, during fine-tuning, the attention scores become a
matrix that describes the relationships among all tokens in the
sequence, as shown in Figure 4(b). It becomes challenging to
prune any particular head since each head might be activated
by a certain token in the sequence. Several studies [14]-[18]
suggest the use of sparse masks, designed to retain all critical
attention scores for saving attention computation. However,
existing sparse masks are typically pre-defined and uniformly
applied to all heads, which fails to efficiently capture the var-
ious sparsity patterns in both the head and input dimensions.
MLP Block. A similar phenomenon is observed in MLP
block. Figure 4(c) shows the activations after applying ReLU
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Fig. 4: Visualization of attention scores in multi-head attention
and activations in MLP block. Due to varying input lengths,
these metrics manifest as vectors during inference and as ma-
trices during fine-tuning. Brighter colors denote high values.

for a single token, which exhibits considerable sparsity. How-
ever, with a sequence of tokens as input, the sparsity of
overall activations, which is measured by the reduction along
the sequence length dimension, reduces greatly as shown in
Figure 4(d). Besides, these scattered activations render the
residual sparsity more unstructured, posing a challenge for
leveraging it for practical acceleration.

We refer to this intricate sparsity observed in fine-tuning as
Shadowy Sparsity, akin to each token casting a partial shadow,
and when these shadows overlap, no light shines through at all.
The presence of shadowy sparsity during fine-tuning makes it
challenging to capture efficient sparsity patterns. On one hand,
shadowy sparsity reduces the degree of sparsity, rendering
it inadequate for achieving practical speedups. On the other
hand, the remaining sparsity is typically highly unstructured,
which is unaligned with the hardware characteristics.

B. Design: Long Exposure

To capture more sparse patterns under shadowy sparsity,
our primary design lies in focusing on the intricate details of
individual sparse pattern that constitutes the shadowy sparsity.
We term this as Long Exposure, which entails employing a
long-duration sensing range to capture more sparsity details.
Multi-head Attention. We employ a binary mask to capture
the inter-token sparsity within a sequence. Each element of
the mask corresponds to a block of attention scores, with
0 indicating non-computation and 1 indicating computation.
Different from previous studies, our approach operates at the
level of individual attention heads, instead of the entire multi-
head attention. Concretely, for given inputs, we identify the
optimal sparse masks independently for each attention head.
These head-specific masks are then combined as the sparse
mask of entire multi-head attention. This finer granularity



broadens the representational scope of sparse masks, thereby
facilitating the capture of distinct sparse patterns hidden in
shadowy sparsity. First, determining the optimal sparse mask
for one head is relatively straightforward, because it is not
required to account for other hands. Second, this approach
can lead to further computational savings, since a score that
is critical for one head might not be necessary for another.
MLP Block. Although overall activations are scattered, varia-
tions in activation frequency and values highlight the relative
importance of each activation. Taking this detailed information
into consideration, we selectively apply a filter to the acti-
vated neurons, effectively treating those of less importance as
inactive. Given that the contributions of these neurons to the
final outcome are minimal, their exclusion has a negligible
impact. We implement this process in a block-wise manner,
resulting in a structured sparse pattern that is well-suited to
the characteristics of the hardware.

V. SEQUENCE-ORIENTED PREDICTOR

Although the precise sparse patterns can emerge naturally
from computation outcomes, this does not contribute to com-
putational savings. To truly reduce computation from sparsity,
it is necessary to identify sparse patterns before the actual
computation. Utilizing low-rank neural networks to accurately
predict these sparse patterns has been proven feasible in LLM
inference [19]-[22]. Given the similarity in freezing the ma-
jority of model parameters, we adopt a similar neural-network-
based approach. However, there are new challenges introduced
in fine-tuning. First, the sequenced inputs could easily lead
to an excessively large predictor, compromising efficiency.
Second, the updates of trainable parameters introduce bias to
the predictor inputs, adversely affecting accuracy.

A. Criterion I: Efficiency

We develop a two-stage design that guarantees the predic-
tor’s efficiency when handling sequence. In stage one, the
predictor processes each token individually, which keeps the
predictor’s size constrained to the dimension of a single token.
In stage two, we consolidate these individual predictions into
an aggregated one that represents the final sparsity for the
token sequence. Building on this sequence-oriented design,
the detailed structure of predictor is specified as follows:
Multi-head Attention. Figure 5(a) shows the process of pre-
diction in multi-head attention’s one head. We construct a pair
of trainable low-rank approximation matrices, WQ and WK, to
obtain the approximate queries Q and keys K. Particularly, we
down-sample the input X in the sequence dimension, reducing
its size from s to /s to decrease subsequent computation. This
approach is rational because our primary concern lies with
the overall distribution of attention scores for mask matching,
rather than any individual value. The approximate attention
scores are then calculated using the following formula:

Satn = OKT = XWoXWi
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Fig. 5: The process of prediction (batch size = 1 for simplic-
ity). Each predictor comprises a set of trainable parameters
( ), which accepts tensors ( ) as input and produces
approximations of attention scores or activations. These out-
comes are then processed to filter out less significant values
( ), and a reduction is performed if needed, to gen-
erate the final sparse pattern ( ) for the token sequence.

Here Sqiim € RVS*VS Wo, Wi € R" and r < d. When
two approximation matrices are well trained, S”mn can provide
a close estimation of accurate attention scores Sgity,.

The Sattn is converted into a binary mask Matm with a
threshold. Additionally, a reduction in the batch dimension is
performed to generate the sparse pattern of the whole input.
The resulting binary mask is then categorized into one of sev-
eral pre-defined typical masks. This strategy not only aligns the
sparse pattern with expert insights [14]-[18] but also provides
convenience for the following efficient implementation.
MLP Block. Figure 5(b) shows our design of predictors
for MLP block. Similarly, we construct a trainable low-rank
matrix W4 to approximate the indices of the activated neuron
blocks. Considering the correlated activation patterns of the
two linear layers, the prediction result is applied to both layer
weight matrices. The approximation can be expressed as:

Spnip = XWa

Here Sy, € R¥*™Y% and W, € Rk where n_blk =
[d/blk_size] is the number of neuron blocks and blk_size
is the number of neurons in each block. When WA is well
trained, S'mlp can indicate the importance of different neuron
blocks in determining the final outputs for the given inputs.
The gmlp is then binarized by applying a threshold, which
serves to filter out blocks deemed less important. Finally,
a reduction is performed on both the batch and sequence
dimension of Mmlp, to obtain the final sparsity pattern.

B. Criterion II: Accuracy

All predictors are pre-trained offline using data collected
from model inference. Since the size of predictors is relatively



small, the training will come to convergence quickly and
consume minimal resources compared to the following LLM
fine-tuning. However, the updating of trainable parameters dur-
ing fine-tuning could potentially skew the distribution of the
original predictor inputs, thus impairing prediction accuracy.

Consequently, we employ two optimizations during pre-
dictor training. First, we add noise to the original data for
data argumentation, which helps the predictor avoid overfitting
and boosts its robustness. Second, we prioritize recall over
precision in the computation of prediction loss. This is because
the final outcome is primarily affected when weights that
should be active are incorrectly predicted as inactive.

C. Analysis: Computational Savings and Overhead.

We finally analyze the computational savings and associated
overhead introduced by predictors.
Savings. In the forward phase, the computational savings
within multi-head attention are primarily derived from the
computation of attention scores, which is reduced from O(s?)
to O(s) thanks to the use of sparse masks. In MLP block, the
computational savings depend on the sparsity ratio, scaling by
an order of magnitude corresponding to s. In the backward
phase, computational savings mirror those seen in the forward
phase, as detailed in the analysis presented in Section II-D.
Overhead. In multi-head attention, the extra overhead for one
batch primarily consists of three matrix multiplications:

Costaitn, = Costg + Costye + Costgr = /sdr + /sdr + sr

In MLP block, the overhead for one batch arises from one
matrix multiplication and one reduction operation:

Costyyp = Costy + Costanp = sdr + s

Given that r < d and d is a constant determined by model
structure, the total computational complexity can be approx-
imated as O(s). Weighed against the substantial savings, the
overhead introduced by predictor is considered acceptable.

VI. DYNAMIC-AWARE OPERATOR

Sparse linear algebra often struggles to match the perfor-
mance of its dense counterparts due to irregular computa-
tion patterns and scattered memory accesses. Many sparsity
tools [31]-[34] manage to achieve comparable performance
based on fixed sparsity pattern, typically relying on either static
kernel compilation or data format conversion before runtime.
However, during fine-tuning, sparse patterns are highly input-
dependent, which can only be determined at runtime. This
dynamic nature of sparsity falls outside the capabilities of
these sparsity tools. Fewer sparse tools [23], [35] are tailored
for dynamic scenarios. However, due to a lack of specific
optimizations for our desired sparsity patterns, they only yield
sub-optimal performance. To map the achieved sparsity onto
hardware systems efficiently, we develop a suite of custom
dynamic-aware operators. These operators make efficient use
of predicted sparse patterns involved in the computation of
both multi-head attention and MLP block.

Offline Construction
data [ index | | data | index | | data |index
0 0 0
pre-
compute 19 19 7
Layouts Lookup Tables
Online Combination
data [ index | data | index | data | index
0 20 28
e B
19 27 47
head 0 head 1 head 2 Lookup Tables
data | index | data | index | data | index
. . 0 20 40
19 39 47
head 0 head 1 head 2 Lookup Tables
\ J \ J
Y L
Predicted Sparse Patterns Offsets Shift

Fig. 6: Example of two-stage approach in multi-head attention.

A. Multi-Head Attention

The computation of sparse attention can be broken down

into two distinct block-wise sparse matrix multiplications:
SDD and DSD, where ‘S’ represents a sparse matrix and
‘D’ denotes a dense matrix. A typical optimization is to pre-
calculate the sparse pattern layout, which reduces the calcula-
tions required during runtime. However, the dynamic property
of sparsity at runtime inherently clashes with the premise of
pre-computation. To preserve computational efficiency in the
face of dynamic sparsity, we propose a two-stage approach,
performed offline and online, as shown in Figure 6.
Offline Pool Construction. The irregular nature of data
layouts in sparse operations means that data indexing con-
stitutes a significant computational workload. Pre-computing
the data layout indices and storing them into lookup tables
is crucial for achieving optimal performance in sparse opera-
tions. Rather than pre-computing certain fixed sparse pattern
layouts—which is impractical due to the dynamic nature of the
sparse patterns—we construct a pool of common atomic sparse
patterns and pre-calculate their layouts. This strategy stems
from the observation that existing sparse attention patterns
often consist of a combination of these atomic patterns [36].
Online Pattern Combination. Based on the predictor’s out-
put, each head is assigned a specific sparse pattern. These
patterns will combined later to form the overall pattern of
multi-head attention. During combination, only an offset needs
to be added to the existing layout lookup tables. Finally,
a list of data block indices is provided for sparse matrix
multiplication. As the basic unit of operation is the block rather
than the individual head, workload imbalance is avoided, even
when the sparse patterns of different heads vary.

This two-stage approach enables a substantial portion of the
computational workload to be shifted to the pre-runtime phase,
while still preserving the flexibility needed for later integration
to accommodate the demands of dynamic sparsity.



TABLE II: Models for evaluation.

Model # Params Batch Size Seq Len

OPT 350M/1.3B/2.7B  2/4 512/1024

GPT-2 774M/1.5B 4/8 512/1024
B. MLP Block

The sparsity introduced by ReLU within MLP block results
in two sparse matrix multiplications occurring in both linear
layers. Unlike common sparse operators, the sparse pattern
here is uniquely column-wise or row-wise. It is because when
an element within the MLP block’s activation is zero, the
corresponding column in the first linear layer as well as the
row in the second linear layer are both rendered inactive.
This particular characteristic allows us to craft two specific
optimizations to achieve better performance.

Neuron Sparsity. Since the basic unit of activated weights
is a column or a row, i.e. a neuron, we design a neuron-
centric matrix multiplication based on the classic matrix
multiplication tiling algorithm. Besides standard inputs, our
specialized operator also accepts indices of activated neuron
blocks. During computation, only the neuron blocks identified
as active are loaded and computed. This approach is inher-
ently compatible with the conventional tiling algorithm and
eliminates the need for data format conversion.

Memory Coalescing. Another optimization arises from the
data loading pattern of weights in the two linear layers:
weights in the first layer are accessed column-wise, whereas
those for the second linear layer are accessed row-wise. This
inspires us to organize the weights in the two linear layers in
a column-major format and a row-major format, respectively.
This alignment with the memory access patterns of GPUs
minimizes the overhead associated with data loading and
enhances computational throughput.

VII. EVALUATION
A. Experimental Setup

Machines. We conduct experiments on two platforms, cov-
ering both data-center workstation and desktop professional
GPU. Platform A contains an AMD EPYC 7V13 processor
and an Nvidia A100 80GB GPU. The A100 GPU provides
1,555 GB/s memory bandwidth and 19.5 TFLOPs FP32 opera-
tions. Platform B contains an AMD EPYC 7742 processor and
4 Nvidia A6000 48GB GPUs. Each A6000 GPU offers 768
GB/s memory bandwidth and 38.71 TFLOPS FP32 operations.
Models. The models used for evaluation are detailed in
Table II. We choose models from two popular LLM families:
OPT [4] and GPT-2 [1]. For GPT-2, we mainly concentrate on
the sparsity within multi-head attention, given that its activa-
tion function is GeLU [37]. Across all experiments, we employ
mixed-precision techniques [38] adhere to common practices,
utilizing FP16 for parameters and FP32 for activations.

PEFT Methods. Our evaluation encompasses on three exem-
plary PEFT techniques: LoRA [6], adapter [7], and bitfit [8],
which are collectively the most widely utilized ones. Specially,

TABLE III: Downstream tasks for evaluation.

Tasks Description

PIQA [41] Physical commonsense reasoning
Winogrande [42] Physical interactions understanding
RTE [43] Natural language understanding
COPA [44] Commonsense causal reasoning

HellaSwag [45] Natural language commonsense

B Full Parameter

[ LoRA =3 Adapter 3 BitFit
EZZ2 Long Exposure + LoRA Long Exposure + Adapter Long Exposure + BitFit
% 600 A100 OPT-1.3B | OPT-2.7B  232[f] 285250
E 246x2.77x2.97x ! 1 16
@ 1001 1 51x1.64
E 2004 1.23x 1.20x 1.33x E A s
£
ol
512 1024 512 1024  Seq_Len
% 500{ AB000 OPT-350M gm288342:382¢ | |, OPT-13B
£ —%2 29x2.49x
g 250 1.28x1.28x1.46x
E
ol
512 1024 512 1024 Seq_Len

Fig. 7: Execution time per batch and speedup of OPT.

we conduct our ablation studies and accuracy validation using
LoRA owing to its broad acceptance within the domain.
Datasets. For performance evaluation, we apply a real-world
dataset E2E [39] to ensure that the sparsity patterns within
LLM reflect real-world situations. For accuracy validation, we
first fine-tune the model on the widely used instruction dataset
Alpaca [40] and then evaluate its accuracy directly without fur-
ther fine-tuning across a variety of representative downstream
tasks, each providing unique challenges as detailed in Table III.
Baselines. We compare the overall performance of our system
with the state-of-the-art fine-tuning library PEFT [46], which
stands as the most relevant benchmark to our knowledge.
Specially, to evaluate the performance of our design on multi-
head attention, we draw comparisons with two classic sparse
attention methods, Big Bird [16] and Longformer [15].

B. Overall Performance

Execution Time. We evaluate the execution time and corre-
sponding speedup of LONG EXPUSURE on A100 and A6000
platforms, as shown in Figure 7. Integrating LONG EXPOSURE
into three exemplary PEFT techniques, we examine two dif-
ferent parameter sizes and sequence lengths for each one. The
results indicate that our system achieves up to 1.25x speedup
on average for OPT-1.3B with a sequence length of 512 on
A100. As the sequence length doubles to 1024, the average
speedup increases to 2.49x. This enhancement is attributed to
the use of sparse attention masks, which alter the computation
complexity from O(s?) to O(s). With a larger 2.7B model,
the speedup remains consistent, averaging 1.44x and 2.49x,
respectively. Parallel results are observed on A6000, under-
scoring the robustness and reliability of our system. Since
the introduction of sparsity reduces the execution time by
decreasing the overall computation workload, this ensures a
consistent speedup across different model sizes or platforms.
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Fig. 8: Memory footprints of OPT fine-tuning on A100.

Memory Footprint. We also evaluate the memory footprints
of LONG EXPOSURE as shown in Figure 8. Despite not being
explicitly designed for memory efficiency, the application
of head-specific sparse attention masks alters the memory
complexity from O(s?) to O(s), leading to lower memory
footprints. Furthermore, selective activating model weights in
MLP block permits the majority of the model to reside on
the CPU, with only the active weights being transferred to
the GPU for processing. This strategy can lead to additional
memory savings, as presented by LONG EXPOSURE (optimal).
Model Accuracy. We investigate the impact of LONG EXPO-
SURE on model accuracy by comparing with original LoRA
across a variety of downstream tasks, as shown in Tabel IV.
We fine-tune OPT models of three distinct sizes on the Alpaca
dataset. The results show that LONG EXPOSURE incurs only
a minimal loss in downstream task accuracy across all model
sizes and task types. This is because the essence of sparsity lies
in disregarding the computation of elements that are zero or
nearly zero, thereby only marginally affecting the final results.

C. Ablation Study

Performance Breakdown. Figure 10 provides a detailed per-
formance breakdown. We measure the execution time for three
major phases within fine-tuning: the forward pass, the back-
ward pass and the optimizer step. Additionally, we measure the
prediction time in LONG EXPOSURE to evaluate the overhead
introduced by predictors. The results show that compared to
full fine-tuning, PEFT techniques can significantly reduce the
execution time for optimizer step, while leaving the forward
and backward passes largely unaffected. Building on this,

TABLE IV: Comparative analysis of OPT model accuracy for
downstream tasks after fine-tuning on the Alpaca dataset, with
or without LONG EXPOSURE.

350M-w/o 350M-w 1.3B-w/o 1.3B-w 2.7B-w/o 2.7B-w

PIQA Acc. 65.13% 64.80% 72.25% 72.09% T74.70% 73.45%
Stderr 1.11% 1.12% 1.05% 1.06% 1.02% 1.02%
Winog Acc. 53.04% 53.12% 58.88% 58.80% 62.27% 62.19%
" Stderr 1.40% 140% 138% 138% 137% 1.36%
RTE Acc. 54.51% 55.60% 54.15% 54.51% 52.71% 53.79%
Stderr 299% 3.01% 3.01% 3.01% 3.00% 2.04%
COPA Acc. 69.00% 70.00% 81.00% 81.00% 78.00% 76.00%
Stderr 4.61% 4.51% 423% 4.02% 429% 4.09%

Hella Acc. 3226% 32.40% 42.08% 42.11% 46.76% 43.95%
" Stderr 047% 047% 0.499% 049%  0.50% 0.50%

LONG EXPOSURE achieves further reductions in execution
time for both forward and backward passes across all three
PEFT techniques. Although predictors are introduced to cap-
ture the sparsity patterns at runtime, their overheads are proved
minimal, ensuring that the efficiency gains are preserved.

Component I: Shadowy-sparsity Exposer. We begin by
assessing the exposer’s capability to capture model sparsity.
Figure 9 (left) shows the sparsity ratios across different layers
of OPT-1.3B when employing different methods. In multi-
head attention, besides shadowy sparsity, we also use two
traditional sparse attention methods, Longformer and Bigbird,
as baselines. The results show that ‘shadowy’ presents the
lowest sparsity ratio. While Longformer and Bigbird can
identify more sparsity, their use of a uniform attention mask
results in a trade-off with accuracy. LONG EXPOSURE outper-
forms all other methods by employing more granular head-
wise masks that are adept at revealing the sparsity concealed
within shadowy sparsity. In MLP block, shadowy sparsity
exhibits a relatively low sparsity ratio, typically not exceeding
60% for most layers. LONG EXPOSURE utilizes a threshold-
based filter to selectively ignore neurons that are activated
but deemed less important. The results show that as the
threshold (defined as a percentage of the peak values) is raised,
the sparsity ratios increase correspondingly. By judiciously
adjusting this threshold, LONG EXPOSURE strikes a balance
between maintaining accuracy and enhancing efficiency.

In another view, we evaluate the corresponding performance
gained from sparsity. Figure 9 (right) presents the execution
time and speedups across different layers when fine-tuning
OPT-1.3B. In multi-head attention, LONG EXPOSURE achieves
1.78x speedup over the dense implementation and 1.33x
speedup over the ‘shadowy’ method. In MLP block, LONG
EXPOSURE outperforms the dense implementation with a
speedup of 4.22x. Particularly, the ’shadowy’ baseline exhibits
lower performance compared to the dense implementation.
This is attributed to its unstructured sparsity pattern, which
differs from the structured block-wise sparsity utilized by
LoONG EXPOSURE, resulting in a reduced arithmetic intensity.
Component II: Sequence-oriented Predictor. We first eval-
uate the necessity of predictors. We compare the fine-tuning
loss curves of our system with those of two baselines that
employ random sparse patterns in multi-head attention and
MLP block, respectively. As Figure 11(a) shows, making
accurate predictions of dynamic sparse patterns at runtime
is crucial for model convergence with minimal loss. Beyond
examining the loss curves, we also offer visual representations
of the predictions from the multi-head attention’s predictor.
Figure 11(b) shows that the predicted attention scores can
closely approximate the ground truth for identifying the proper
sparse pattern. Within MLP block’s predictors, we report recall
metrics, achieving an impressive average of 96.35%.
Component III: Dynamic-aware Operator. We benchmark
our operators against their dense counterparts under various
sparsity ratios in Figure 12. In multi-head attention, the spar-
sity is applied block-wise, while in MLP block, the sparsity
is neuron-wise. Both are aligned with the sparsity patterns
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Fig. 11: Fine-tuning loss curve (a) and prediction visualiza-
tions of predictors in multi-head attention (b).

utilized in LONG EXPOSURE. The results show that all opera-
tors can attain speedups as sparsity ratio increases, achieving
enhancements of up to 3 — 5x. Besides, the execution time
of all dynamic operators exhibits an almost linear relationship
with sparsity ratio, suggesting that our operators are adaptable
and efficient in scenarios with dynamic sparsity levels.

D. Scalability

We explore the scalability of LONG EXPOSURE from two
aspects. The first is the model type. Beyond OPT, we extend
our experiments to GPT-2, a GeLU-based model. As shown
in Figure 14, although only optimizations on multi-head at-
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Fig. 13: Execution time per batch and speedup of GPT-2.

tention are applied, LONG EXPOSURE consistently achieves
average speedups of up to 1.63x and 1.55x on two different
model sizes, respectively. The second is the number of GPU
utilized. We maintain a constant dataset size and increase the
GPU count to evaluate the strong scalability of our system.
Figure 13 shows that the performance of our system scales
linearly with the addition of more GPUs across three different
model sizes. This is attributed to the fact that all optimizations
within our system focus on the model computation workload,
thereby introducing no extra communication overhead.

VIII. RELATED WORK

Model Pruning. Pruning aims to remove parameters without
performance loss [47]. Static pruning stands out as one such
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approach, which involves developing effective criteria for
pruning models offline prior to subsequent inference [48]-[52].
In contrast, dynamic pruning is conducted during runtime.
Certain studies incorporate this process into the model train-
ing [53]-[55], while others devise specialized optimizations
for integration with fine-tuning [56], [57]. Different from these
pruning techniques, LONG EXPOSURE does not prune any pa-
rameters but selectively activates a portion of them, preserving
the model’s original capacity for generalization. Furthermore,
LONG EXPOSURE specifically aims to accelerate the fine-
tuning process itself rather than the subsequent inference.
PEFT Optimization. The widespread adoption of PEFT
techniques has spurred numerous studies focused on opti-
mization. Some efforts aim to enhance PEFT performance.
AdalLoRA [58] proposes to adaptively allocate the parameter
budget by significance. LoHa [59] seeks to use more low-
rank matrices for approximation and combines them with the
Hadamard product. Some studies merge model compression
with PEFT to improve further inference efficiency. Methods
like QLoRA [60], SPA [61], PST [62], LRP [63] combine
quantization or model pruning with PEFT. In addition, there
are studies dedicated to optimizing PEFT’s memory footprint.
LST [64] introduces a ladder-side network for less gradient
calculation. LoRA-FA [65] opts to freeze the down-projection
matrix in LoRA for less activation memory. However, these
studies primarily focus on algorithmic-level optimizations
and overlook the wall-clock time impact of PEFT. LONG
EXPOSURE accelerates PEFT holistically by addressing both
algorithmic-level and system-level optimizations.

IX. CONCLUSION

We propose LONG EXPOSURE, a highly efficient system de-
signed to accelerate parameter-efficient fine-tuning for LLMs.
Our approach notably identifies the intrinsic sparsity within
LLM fine-tuning and introduces three key components that
systematically capture, predict, and exploit these sparse pat-
terns. LONG EXPOSURE demonstrates up to 2.49x speedup
over state-of-the-art methods, underscoring the potential for
more extensive exploitation of sparsity for PEFT acceleration.
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