
Jigsaw: Toward Conflict-free Vectorized Stencil
Computation by Tessellating Swizzled Registers

Yiwei Zhang
∗†

University of Chinese Academy of

Sciences

Microsoft Research

Beijing, China

Kun Li
†‡

Microsoft Research

Beijing, China

Liang Yuan
‡

Chinese Academy of Sciences

Beijing, China

Haozhi Han

Peking University

Microsoft Research

Beijing, China

Yunquan Zhang

Chinese Academy of Sciences

Beijing, China

Ting Cao

Microsoft Research

Beijing, China

Mao Yang

Microsoft Research

Beijing, China

Abstract
Stencil computation plays a pivotal role in numerous sci-

entific and engineering applications. Previous studies have

extensively investigated vectorization techniques to enhance

in-core parallelism; however, the performance bottleneck

caused by data alignment conflicts (DAC) has not been effec-

tively resolved in all dimensions. This paper proposes Jigsaw,
a conflict-free vectorization method to reduce DAC across

all dimensions by tessellating swizzled finest-grained lanes.

Jigsaw comprises three key components: Lane-based But-

terfly Vectorization, SVD-based Dimension Flattening, and

Iteration-based Temporal Merging. These components effec-

tively address DAC across spatial and temporal dimensions.

Experimental results on different machines demonstrate that

Jigsaw could achieve a significant improvement compared

to the state-of-the-art techniques, with an average speedup

of 2.31x on various stencil kernels.

∗
Work done during an internship at Microsoft Research, with Project Lead

(kunli@microsoft.com).

†
Both authors contributed equally to this research.

‡
Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

CCS Concepts: • Computing methodologies→ Vector
/ streaming algorithms; • Theory of computation →
Vector / streaming algorithms.

Keywords: Stencil Computation, High Performance Com-

puting, Vectorization, Data Alignment Conflict

1 Introduction
Ubiquitous in scientific or industrial computing, stencil com-

putation is identified as one of the principal templates in

the high performance computing community [4, 5]. The

essence of stencil computation lies in a pre-defined pattern

that iteratively updates given points using neighboring grid

points [51]. The naive computation of a 𝑑-dimensional sten-

cil is accomplished by 𝑑 + 1 nested loops, with the outermost

updating along the time dimension and the inner iterates

over each grid point. Consequently, stencil computation suf-

fers from poor data reuse and low computational intensity,

notoriously known as a memory-bound kernel [11, 32, 61].

Various optimization techniques for stencil have been ex-

haustively studied in order to improve performance, among

which vectorization has been demonstrated as an effective

approach [22, 30, 35, 38, 41, 48, 69]. Leveraging the SIMD

facilities in modern CPU architectures, vectorization seeks

to boost in-core throughput by exploiting data-level paral-

lelism. Although vectorization is prevalent and promises

performance improvements, it is still critically bottlenecked

by an accompanying problem, data alignment conflict.
Data alignment conflict (DAC) is the main performance-

limiting factor caused by vectorization on stencil computa-

tion inherently. In the iteration space, it manifests as vector-

data conflict in the innermost loop and vector-dimension

conflict in the outer loops. In the innermost loop, i.e. unit-

stride update direction, since the data elements are stored

contiguously in memory, the neighbors for each element



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

are loaded into different positions within the same register.

However, stencil computation requires remapping adjacent

elements to the same position in different registers, shaping a

conflict between vector operations and data layout. When ex-

tended to multidimensional stencils, this conflict propagates

to other dimensions (outer loops), introducing exponentially

growing additional vector-data conflicts, which we refer to

as vector-dimension conflict.

Significant efforts have been devoted to alleviating this

issue [24, 61], by reducing the volume of loading data and/or

shuffle instructions. Recently, one milestone approach to ad-

dress DAC is Folding [37], which endeavors to exploit data

reuse by optimizing the vectorization order. This method

stands as a pinnacle in the realm of stencil vectorization.

However, its in-register transposition introduces a signifi-

cant number of non-computational shuffle instructions, re-

ducing computational intensity. Moreover, akin to other vec-

torization attempts, it focuses on high-level optimization of

stencil algorithms while neglecting the underlying architec-

ture, thus failing to fully exploit the hardware potential.

In this paper, we propose a conflict-free vectorization

method for stencil computation, Jigsaw, to efficiently re-

duce DAC across all dimensions by tessellating swizzled

registers with the finest-grained lanes.

The design of Jigsaw is based on two key observations,

which first delve into the deeper roots of DAC in terms

of vector register architecture: 1) Existing works primar-

ily follow a top-down methodology. They focus solely on

optimizing stencil at the algorithmic level without delving

into the underlying vector architecture, which leads to an

underutilization of the hardware’s full potential. 2) Vector

registers are composed of the finest-grained operational units

called lanes. Cross-lane instructions are significantly more

expensive than in-lane instructions and these register reor-

ganization operations constitute a major non-computational

bottleneck in existing work.

Guided by upon observations, the key insight of Jigsaw

is to adopt a bottom-up methodology, where the design of

the stencil vectorization algorithm is informed by the un-

derlying architecture. By employing tessellating swizzled

manipulations of the finest-grained lanes within vector reg-

isters, Jigsaw provides a general and flexible solution to the

DAC. Consequently, this approach enables conflict-reduced

vectorized computations across single-dimensional, multi-

dimensional, and temporal dimensions.

Jigsaw incorporates three key techniques: Lane-based But-

terfly Vectorization for single dimension, SVD-based Dimen-

sion Flattening for multiple dimensions, and Iteration-based

Temporal Merging for temporal dimension.

Lane-based Butterfly Vectorization (LBV) mitigates

vector-data conflicts in the innermost spatial loop by metic-

ulously manipulating finest-grained lanes. Capturing the

hardware characteristics of vector registers, LBV alleviates

vector-data conflicts bymoving data lane-to-lane, whichmin-

imizes the expensive cross-lane overhead to the theoretical

lower bound. Moreover, LBV overlaps data-reordering and

arithmetic operations carefully to occupy different vector

functional units on the CPU. Unlike previous work address-

ing DAC before or after stencil computation, this design

further decreases pipeline bubbles caused by data layout

transformation in computation.

SVD-basedDimension Flattening (SDF) addresses vector-
dimension conflicts in the outer spatial loops by mathemati-

cally decomposing the coefficient matrix. By decomposing

the stencil coefficient matrix into an overlay of several rank-1

matrices, SDF reorganizes the computation order at the vec-

tor register level, transforming 2D stencil into 1D stencils. By

leveraging the consistency of lane dependency across multi-

ple loops, SDF reduces the redundant vector reorganization

instructions in high-dimensional stencils. This method min-

imizes unnecessary inter/intra-register data shuffling and

alleviates register spilling, reducing data preparation time

and computation-agnostic pipeline stalls.

Iteration-based Temporal Merging (ITM) further re-
duces data alignment conflict in the outermost temporal loop

by merging computations along the time dimension. As on-

chip register space is limited and hard to be employed for

temporal data reuse, the updates are swept from registers to

cache instantly as a usual practice. Here, we design a novel

temporal compression strategy to explore multi-step stencil

computations within a single iteration on registers. It iden-

tifies the temporal dependencies and carefully compresses

the register footprints to eliminate recurring DACs in multi-

step iterations, thereby efficiently reducing the data transfer

volume between registers and cache.

To the best of our knowledge, Jigsaw is the first stencil vec-

torization scheme that captures hardware characteristics and

employs a bottom-up design to mitigate DAC. This method

tessellates vector registers in both spatial and temporal di-

mensions to achieve conflict reduction across all dimensions.

Furthermore, benefiting from Jigsaw’s flexible design that

delves deeply into the underlying architecture, it is orthog-

onal to other high-level optimization techniques, such as

blocking and computation reordering.

We evaluate Jigsaw on both Intel and AMD architectures

against classical vectorization algorithms (Multiple Loads [52],

Multiple Permutations [9, 61]), highly optimized domain-

specific languages (DSLs) (SDSL [24], Pluto [6, 8]), and state-

of-the-art optimization work (Folding [60], Tessellation [37]),

experimental results demonstrate the effectiveness of Jigsaw.

Our contributions are outlined as follows:

• Wepropose Jigsaw, a novel stencil vectorizationmethod

that delves into the underlying architecture of vector

registers to reduce DAC across all dimensions.



Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

B0 B1 B2 B3 C0 C1 C2 C3A0 A1 A2 A3

A1 A3

B2B1 B3

C1 C3

A2

C2

A1 A2 A3 A4

A0 A1 A2 A3

A1 A2 A3 A4

A2 A3 A4 A5

Vector Register a1

a2
Redundant

Data

A2A1 A3

A0

Memory Contents

a3

Vector-Data Conflict

Vector-Dimension Conflict

(a)

(b)

X-loop

y
-
l
o
o
p

A1 A2 A3 A4 C1 C2 C3 C4B1 B2 B3 B4

A2 A3 A4 A5 C2 C3 C4 C5

y-loop

X
-
l
o
o
p

3x Vector-Data Conflict

Update Dependence, non-conflict Dependence, conflictUpdate Dependence, non-conflict Dependence, conflict

B2 B3 B4 B5

A1 A2 A3 A4 A5 ...

B0 B1 B2 B3 B4 B5 ...

C0 C1 C2 C3 C4 C5 ...

Scalar Computation
and Dependence Vector Computation

for (x = 1; x < N; x = x + 1)
S[x] = a1*A[x-1] + a2*A[x] + a3*A[x+1];

Scalar 1D3P Stencilfor (x = 1; x < N; x = x + 1)
S[x] = a1*A[x-1] + a2*A[x] + a3*A[x+1];

Scalar 1D3P Stencilfor (x = 1; x < N; x = x + 1)
S[x] = a1*A[x-1] + a2*A[x] + a3*A[x+1];

Scalar 1D3P Stencil

for (x = 1; x < N; x = x + 1)
for (y = 1; y < N; y = y + 1)

S[y][x] = a1*A[y-1][x-1] + a2*A[y-1][x] + a3*A[y-1][x+1];
+ b1*A[y+0][x-1] + b2*A[y+0][x] + b3*A[y+0][x+1];
+ c1*A[y+1][x-1] + c2*A[y+1][x] + c3*A[y+1][x+1];

Scalar 2D9P Stencil
Innermost loop
Outer loop

for (x = 1; x < N; x = x + 1)
for (y = 1; y < N; y = y + 1)

S[y][x] = a1*A[y-1][x-1] + a2*A[y-1][x] + a3*A[y-1][x+1];
+ b1*A[y+0][x-1] + b2*A[y+0][x] + b3*A[y+0][x+1];
+ c1*A[y+1][x-1] + c2*A[y+1][x] + c3*A[y+1][x+1];

Scalar 2D9P Stencil
Innermost loop
Outer loop

for (x = 1; x < N; x = x + 1)
for (y = 1; y < N; y = y + 1)

S[y][x] = a1*A[y-1][x-1] + a2*A[y-1][x] + a3*A[y-1][x+1];
+ b1*A[y+0][x-1] + b2*A[y+0][x] + b3*A[y+0][x+1];
+ c1*A[y+1][x-1] + c2*A[y+1][x] + c3*A[y+1][x+1];

Scalar 2D9P Stencil
Innermost loop
Outer loop

Figure 1. Data Alignment Conflicts (DAC) in the spatial

dimension of stencil vectorization. Left side depicted scalar

computations for 1D3P and 2D9P stencils, while right il-

lustrated vector-data conflicts introduced in the innermost

dimension and vector-dimension conflicts introduced in the

outer spatial dimensions during vectorization.

• LBV, SDF and ITM achieve comprehensive reductions

in DAC across single-dimensional, multi-dimensional,

and temporal dimensions, respectively.

• We implement Jigsaw and experimental results demon-

strate the superior efficiency of Jigsaw compared to

various state-of-the-art methods.

2 Background
2.1 Data Alignment Conflict
Stencil computation performs iterative updates on grid points

within multidimensional inputs according to a predefined

computational pattern. It is commonly denoted as nDkP to

indicate the dimensions and number of points involved. Fig-

ure 1 illustrates the stencil computation patterns for 1D3P

and 2D9P. Data alignment conflict (DAC) is a critical bottle-

neck in stencil vectorized computation, primarily caused by

data dependencies. We elucidate this fundamental issue via

a straightforward example.

Figure 1(a) illustrates the vector-data conflict issue encoun-

tered during the vectorized computation of a 1D3P stencil.

In scalar computation, elements within registers can be shift-

reused, ensuring that each point in the iteration space is

loaded from memory only once. However, in vectorized com-

putation, elements within vector registers are not reusable

in the subsequent iteration, leading to a significant increase

in memory accesses. For instance, in Figure 1(a), the three

vectors are discarded after computing (A1,A2,A3,A4), and
cannot be reused for computing (A5,A6,A7,A8).
Figure 1(b) illustrates the extension of vector-data con-

flicts to vector-dimension conflicts in a 2D9P stencil. It can

A1 A2 A3 A4

256-bit register

128-bit lane slot

lane1 lane2

A1 A2 A3 A4

A2 A1 A4 A3

A1 A2 A3 A4

A4 A1 A2 A3

A1 A2 A3 A4

A5 A6 A7 A8 A1 A5 A3 A7

A3 A4 A5 A6

Cross 
lane

In 
lane

vpermpd

vperm2f128

vshufpd

vpermilpd

Vector 
Architecture 

Shuffle 
Instructions

Figure 2. Vector Architecture and Shuffle Instructions. Ele-

ments of the same color within a vector indicate that they

originally reside in the same lane.

be observed that the vector-data conflicts present in the unit

stride update dimension of the spatial domain (i.e., the inner-

most loop x) are extended to the outer loop y, resulting in

a threefold increase in conflicts compared to the 1D3P case.

This escalation occurs because vector operations are con-

fined to a single dimension; hence, when multi-dimensional

dependencies are introduced, they lead to multiple instances

of additional vector-data conflicts.

The crux of data alignment lies in the requirement for

vectorized operations to aggregate adjacent elements into a

single vector register. However, the unique nature of stencil

computation, where each element’s iteration depends on its

neighboring elements, introduces a need for data dependen-

cies across different positions within the register. This re-

sults in additional data movement instructions or redundant

memory access to satisfy inter-vector dependencies, thereby

diminishing the efficiency of vectorized computations.

Significant efforts have been devoted to alleviating vector-

data conflict. Multiple Loads adopts a straightforward im-

plementation by staggered loadings from memory [52]. It

achieves an efficient computing pipeline without any shuffle

bubbles, while the data transfer volume is multiplying at a

dizzying rate. Moreover, unaligned data access introduced

by staggered loading degrades the performance consider-

ably. On the contrary, Multiple Permutations loads each ele-

ment into the register only once and assembles the required

vectors via inter/intra-register shuffle instructions [9, 61].

Compared with the previous method, it reduces memory

bandwidth usage and takes advantage of the rich set of data-

reordering instructions on the CPU. However, it produces

massive non-compute bubbles in the pipeline, and the limited

data shuffle units exacerbate the pressure of data-reordering

traffic inside the CPU.



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

2.2 Architecture of Vector Registers
The vector register is a fundamental unit of SIMD (Single

Instruction Multiple Data) architectures for instruction oper-

ations and data storage in vector computations. In modern

CPUs, all vector registers (SSE-style 128-bit, AVX/AVX2-

style 256-bit, or Intel AVX-512 style 512-bit) can be divided

into 128-bit groups known as lanes [25]. For instance, in the

AVX2 instruction set architecture, a vector register YMM

is constructed by linking two 128-bit lanes to form a co-

hesive unit, and each lane is an XMM vector register, as

illustrated in Figure 2. To enhance the vectorization oppor-

tunities, register-based gather-scatter instructions, such as

shuffle instructions are indispensable. These instructions en-

able the movement and reordering of data between registers,

making them applicable to more vectorized scenarios. Due

to the lane-based architecture design, cross-lane instructions

(vpermpd, vperm2f128) incur additional terms of instruc-

tion execution and data communication compared to in-lane

instructions (vshufpd, vpermilpd). Consequently, this re-
sults in significant latency and throughput penalties [20], as

shown in Table 1.

3 Jigsaw
3.1 Lane-based Butterfly Vectorization
In this subsection, we introduce a novel stencil vectorization

method, Lane-based Butterfly Vectorization, aimed at mini-

mizing the shuffle overhead induced by vector-data conflicts

in the innermost dimension.

The development of LBV is predicated upon two key ob-

servations: 1) Stencil vectorization introduces a substantial

number of vector shuffle instructions to construct depen-

dent vectors. Minimizing these non-computational register

data movement costs is crucial for boosting performance.

2) The efficiency of shuffle instructions is contingent upon

the vector architecture, with vectors being composed of

finer-grained lanes. Consequently, cross-lane instructions

are much more expensive than in-lane instructions. Previous

vectorization approaches have focused on the vector level as

the minimal granularity, inadvertently introducing numer-

ous expensive cross-lane instructions to construct depen-

dent vectors. These cross-lane instructions can be reduced

through tessellating swizzled manipulations of lanes.

Drawing from the above observations, we propose LBV by

conducting butterfly vectorization at the finest granularity,

Table 1. Comparison of latency and throughput for Cross-

lane and In-lane instructions in Alder/Ice Lake architectures.

Type Cross-lane In-lane

Instruction vpermpd vperm2f128 vshufpd vpermilpd

Latency 3 3 1 1

Throughput (CPI) 1 1 0.5 1

Algorithm 1 Lane-based Butterfly Vectorization for 1D5P Stencil.

𝑇%2 = 0, 𝑁𝑋%8 = 0

1: function LBV( )

2: for 𝑡 ← 1 to 𝑇 do
3: v0 ← (𝑎𝑡

2
, 𝑎𝑡

3
, 𝑎𝑡

4
, 𝑎𝑡

5
)

4: v𝑝0 ← (𝑎𝑡
0
, 𝑎𝑡

1
, 𝑎𝑡

2
, 𝑎𝑡

3
)

5: for 𝑥 ← 2 to 𝑁𝑋 by 8 do
6: v1 ← (𝑎𝑡𝑥+4, 𝑎

𝑡
𝑥+5, 𝑎

𝑡
𝑥+6, 𝑎

𝑡
𝑥+7)

7: v2 ← (𝑎𝑡𝑥+8, 𝑎
𝑡
𝑥+9, 𝑎

𝑡
𝑥+10, 𝑎

𝑡
𝑥+11)

8: v𝑠1, v𝑠2 ← InLaneShuffle(v0, v1)
9: v𝑝1 ← CrossLaneShuffle(v0, v1)
10: v𝑝2 ← CrossLaneShuffle(v1, v2)
11: v𝑟0 ← ArithmeticOp(v𝑠1, v𝑠2)
12: v𝑠1, v𝑠2 ← InLaneShuffle(v𝑝0, v𝑝1)
13: v𝑠3, v𝑠4 ← InLaneShuffle(v𝑝1, v𝑝2)
14: v𝑟1, v𝑟2 ← ArithmeticOp(v𝑠1, v𝑠2, v𝑟0, v𝑠3, v𝑠4)
15: v0, v𝑝0 ← v2, v𝑝2
16: v𝑟1, v𝑟2 ← InLaneShuffle(v𝑟1, v𝑟2)
17: (𝑎𝑡+1𝑥 , 𝑎𝑡+1

𝑥+1, 𝑎
𝑡+1
𝑥+2, 𝑎

𝑡+1
𝑥+3) ← v𝑟1

18: (𝑎𝑡+1
𝑥+4, 𝑎

𝑡+1
𝑥+5, 𝑎

𝑡+1
𝑥+6, 𝑎

𝑡+1
𝑥+7) ← v𝑟2

19: end for
20: end for
21: end function

the lane level. LBV exploits the architectural features of vec-

tor registers, employing cost-effective in-lane instructions

to move adjacent data into neighboring registers, thereby

satisfying half of the data dependencies necessitated for two

vectors simultaneously. Additionally, by temporarily trans-

forming the data layout within registers during computation,

LBV facilitates the overlapping execution of dependency

construction and data computation.

LBV Process. Algorithm 1 and Figure 3 illustrate the detailed

computational process of LBV using 1D5P stencil as an exam-

ple. In Figure 3, we depict the vector register as Tetris blocks

to illustrate their underlying structure, with the upper and

lower blocks representing lane1 and lane2, respectively. In
Algorithm 1, the outermost loop (line 2) iteratively sweeps

along the time dimension. Lines 3-4 prefetch two vectors v0
and v𝑝0 for boundary processing and subsequent pipelined

computation. The innermost loop employs the LBV method

to update grid points with a stride of two vector lengths

(vl=4), which encompasses three steps.

Step 1 corresponds to lines 6-10 of Algorithm 1. Initially,

vectors v1 and v2 are loaded to update the elements in v0
and v1 for the next step, with the loaded and updated ele-

ments shown as green and orange blocks in Figure 3, respec-

tively. The only cross-lane instruction used in LBV appears

in lines 9-10, implemented via the vperm2f128 instruction
to concatenate lanes from two vectors, i.e., (lane1,lane2)+
(lane3,lane4)→(lane2,lane3). Concurrently, the in-lane
instruction vshufpd, which has lower latency, is used to

exchange data within the corresponding lanes of the two

vectors, i.e., (𝑐, 𝑑, 𝑒, 𝑓 )+(𝑔, ℎ, 𝑖, 𝑗)→(𝑐, 𝑔, 𝑒, 𝑖)+(𝑑,ℎ, 𝑓 , 𝑗). The



Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

c d

e f

g h

i j

c g

e i

d h

f j

a b

c d

e f

g h

i j

k l

a e

c g

b f

d h

ghcd gh

ef ij

e i

j k

f j

h l

C G

E I

D H

F J

lane1

lane2

Load Data

lane1

lane2

Cross-lane In-lane

Stencil 
Result

Vector 
Register

vperm2f128

vshufpd
arithmetic
operation

a b c d e f g h i j k l ...

Memory Contents

v0

v1

vp0

vp1

vp2

vs1

vs2

vs4

vr0

vr1

vr2

vs1

vs2

vs3

Step 1 Step 2 Step 3

LBV

Figure 3. Lane-based Butterfly Vectorization of Jigsaw. The

red, blue, and yellow arrows represent cross-lane, in-lane,

and arithmetic instructions, respectively. The blocks corre-

sponding to these colors denote the vector registers obtained

after executing the respective instructions.

elements generated by cross-lane and in-lane operations are

represented by red and blue blocks, respectively.

Step 2 corresponds to lines 11-13. After obtaining v𝑝1 and
v𝑝2, in-lane shuffles are subsequently performed to construct

additional vectors that satisfy dependencies on multiple

neighboring points. Simultaneously, arithmetic operations

can be conducted on v𝑠1 and v𝑠2, which were derived from

the previous in-lane shuffle, yielding partial results (𝑐 +𝑑,𝑔+
ℎ, 𝑒 + 𝑓 , 𝑖 + 𝑗) (depicted by yellow blocks in Figure 3). This

strategy overlaps data movement with arithmetic computa-

tion, thereby reducing pipeline stalls.

Step 3 corresponds to lines 14-18, involves arithmetic com-

putation and data storage. Once in-lane shuffles are com-

pleted in the second step, all dependency vectors required for

the update are obtained. Performing arithmetic operations

on these vectors yields the final stencil result. Following this,

an in-lane shuffle is applied to v𝑟1 and v𝑟2, allowing the com-

puted results to be written back to memory. By distributing

the shuffles introduced by vector-data conflicts throughout

the entire computation process via temporary data layout

transformations in registers, we effectively reduce idle time

waiting for data preparation during vector operations.

Instruction Efficiency Analysis. In LBV, the computation

for each vector necessitates just one cross-lane instruction,

reaching the theoretical lower bound. This arises from the

inherent characteristics of stencil vectorization, where an

element cannot reside exclusively within a single lane. Oth-

erwise, all its neighbors and their neighbors would also have

to reside within the same lane, which is infeasible. Conse-

quently, with only one initial load, at least one cross-lane

instruction is inevitably required.

Conversely, in Multiple Permutations, each neighbor de-

pendency necessitates a separate cross-lane instruction, re-

sulting in a linear increase in the number of cross-lane in-

structions as the stencil radius grows. This significantly im-

pacts data preparation time as the radius increases. Multi-

ple Loads encounters a similar problem. For example, from

1D3P to 1D5P, the number of vectors that must be loaded

to compute a single vector increases from 3 to 5. Each load

instruction (vmovupd) requires 7 clock cycles, which far ex-

ceeds the time needed for shuffle instructions, leading to

severe pipeline inefficiencies.

Compared to the state-of-the-art Folding technique, which

leverages matrix transposition for vectorized computation,

LBV also reduces the number of cross-lane instructions by

half. Additionally, Folding requires extensive cross-lane shuf-

fling before each computation to transpose datawithin vector

registers, whereas LBV overlaps shuffling with computation.

This overlap significantly reduces pipeline stalls and alle-

viates concerns about register spilling. Furthermore, LBV’s

design, being inherently flexible and architecture-based, en-

sures excellent generality and scalability. It is not constrained

by register length or specific application scenarios, making

it a versatile solution.

3.2 SVD-based Dimension Flattening
After introducing the LBV computation for 1D stencil, the

subsequent challenge is to address vector-dimension con-

flicts in multi-dimensional stencils. To this end, we propose

SVD-based Dimension Flattening method to efficiently re-

duces conflicts across all spatial dimensions.

The fundamental idea behind SDF is to capitalize on the

uniformity of innermost vectorized operations within the

multilayer spatial loops of stencil computations. By employ-

ing conflict-free vector gathering (Dimension Flattening)

of dependencies in non-unit-stride dimensions, SDF elimi-

nate vector-dimension conflicts in outer spatial dimensions,

transforming 2D stencil computations into conflict-free 1D

stencil computations. Algorithm 2 and Figure 4 illustrate the

application of SDF and LBV in 2D stencil computation.

Dimension Flattening. The essence of vector-dimension

conflicts lies in the diagonal dependencies of update points

on cross-dimensional neighbors. By decomposing diagonal

dependencies into update direction (innermost loop) and

orthogonal direction (outer loop) dependencies, we can elim-

inate redundant shuffle instructions. This means first collect-

ing conflict-free dependencies in the outer loop, followed by

conflict dependency collection in the innermost loop.

We identify that dependencies in a single dimension can

be encapsulated by a coefficient vector. When the coefficient

matrix𝐶𝑛×𝑛 (the matrix composed of weights corresponding

to each point of the stencil) is of rank-1, it can be rank-

decomposed into the outer product of two vectors (line 11),



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

Z

Naive

Optimized

(A[x][y])+ 
(A[x-1][y]+A[x+1][y]+A[x][y-1]+A[x][y+1])+ 
(A[x-1][y-1]+A[x-1][y+1]+A[x+1][y-1]+A[x+1][y+1])

Original Matrix

Dependence, no DAC

Dependence, DAC

Update

A[x][y]

Single Point

r

a b c d

i j k l

q s t

e f g h

m n o p

u v w x

I J K L M N O P

Shuffle

Shuffle

Shuffle

Shuffle
Dimension Flattening

I J K L K L M N

Naive

Optimized
Naive

a b c d

i j k l

q r s t

b c d e

r s t u

c d e f

k l m n

s t u v

j k l m

LJ K M j k l m
Optimized

Matrix DecompositionRank-1 Matrix

[A[x][y]   + (A[x][y-1]+A[x][y+1])]     +
[A[x-1][y] + (A[x-1][y-1]+A[x-1][y+1])] + 
[A[x+1][y] + (A[x+1][y-1]+A[x+1][y+1])]FlatteningS

c
a
l
a
r

v
e
c
t
o
r

Figure 4. Scalar and vectorized illustration of SVD-based Dimension Flattening strategy for Box-2D9P stencil.

like Equation (1)

𝐶 = 𝒖 ⊗ 𝒗T (1)

where 𝒖 and 𝒗 are the vertical and horizontal dependency

vectors, respectively.

This rank-decomposition allows us to flatten the depen-

dencies of a 2D stencil into a 1D stencil. The Flattening
function in Algorithm 2 (line 1) represents the conflict-free

vertical dependency collection for 𝑛 × 𝑛 vector registers,

resulting in 𝑛 vector registers that only have horizontal de-

pendencies, thereby transforming the 2D stencil into a 1D

stencil. Subsequently, the LBV method can be applied to

compute the 1D stencil.

SVD Decomposition. However, for most stencils, their co-

efficient matrices are not naturally rank-1. To address this

issue, we employ Singular Value Decomposition (SVD) to

decompose the original coefficient matrix of any rank. Specif-

ically, for a rank-r matrix𝑊𝑛×𝑛 , let𝑊 = 𝑈 Σ𝑉 T
of the SVD of

𝑊 , where 𝑈 and 𝑉 are orthogonal and Σ = diag(𝜎1, ..., 𝜎𝑛).
We usually take 𝜎1 ≥ 𝜎2 ≥ ..., so 𝜎𝑖 = 0 for 𝑖 > 𝑟 . Define

Σ𝑖 := diag(0, ..., 0, 𝜎𝑖 , 0, ..., 0)

i.e., Σ𝑖 has 𝜎𝑖 at 𝑖-th position and zeros everywhere else.

Obviously, Σ =
∑

𝑖 Σ𝑖 and Σ𝑖 ≠ 0 if and only if 𝑖 ∈ {1, ..., 𝑟 },
so

𝑊 = 𝑈 Σ𝑉 T =

𝑟∑︁
𝑖=1

𝑈 Σ𝑖𝑉
T =

𝑟∑︁
𝑖=1

𝐶𝑖 (2)

then, we decompose𝑊 into a sum of 𝑟 rank-1 matrix𝐶𝑖 (line

10) .Subsequently, each 𝐶𝑖 can be subjected to Dimension

Flattening and LBV computation.

Coefficient Symmetry. Additionally, we observe that the
coefficients often exhibit symmetry, meaning that neighbor

points with the same Euclidean distance of their correspond-

ing dependence directions share an identical coefficient[7,

13, 27, 37, 58]. This observation indicates that the original

Algorithm 2 SVD-based Dimension Flattening and LBV.

1: function Flattening(VS, 𝒖)
2: for 𝑥 ← 1 to 𝑛 do
3: for 𝑦 ← 1 to 𝑛 do
4: v𝑥 ← v𝑥 + 𝑢𝑦 × VS𝑦𝑥
5: end for
6: end for
7: return v1, ..., v𝑛
8: end function
9: function Stencil( )

10: 𝐶1, ...,𝐶𝑟 ← SVDDecomposition(𝑊𝑛×𝑛) ⊲ rank(𝑊𝑛×𝑛) = r

11: (𝒖1, 𝒗1), ..., (𝒖𝑟 , 𝒗𝑟 ) ← RankDecomposition(𝐶1, ...,𝐶𝑟 )

12: for 𝑡 ← 1 to 𝑇 do
13: for 𝑦 ← 1 to 𝑁𝑌 do
14: for 𝑥 ← 2 to 𝑁𝑋 by 8 do
15: VS

2𝑑 ← VecLoad(A, y, x)

16: for 𝑖 ← 1 to 𝑟 do
17: VS

1𝑑 ← Flattening(VS
2𝑑 , 𝒖𝑖 )

18: VS𝑟 ← LBV(VS
1𝑑 , 𝒗𝑖 )

19: end for
20: VecStore(A, y, x)← VS𝑟
21: end for
22: end for
23: end for
24: end function

matrix has low-rank properties, resulting in only a few rank-

1 matrices after matrix decomposition, which significantly

reduces the subsequent computational workload.

For instance, in the case of the Box-2D9P stencil, its vec-

torized computation process is illustrated in Figure 4. Due to

the symmetry of the coefficients, the original weight matrix

can be decomposed into the sum of a rank-1 3 × 3 matrix

along with a single point. This rank-1 coefficient matrix elim-

inates vector-dimension conflicts in the 2D space, thereby

enabling direct dimension flattening and vector computation.

By employing the SDF method, the vectorized computation



Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

Table 2. Analytical vector instructions for Jacobi Stencils (per vector)

Kernel Star-1D5P Box-2D9P Box-3D27P Heat-1D Heat-2D Heat-3D

Operation
1

L S C I L S C I L S C I L S C C L S C I L S C I

Auto
2

5 1 0 0 9 1 0 0 27 1 0 0 3 1 0 0 5 1 0 0 7 1 0 0

Reorg 1 1 3 3 3 1 6 6 9 1 18 18 1 1 2 2 3 1 2 2 5 1 2 2

Jigsaw 0.5 0.5 0.5 2 2.5 0.5 0.5 1 12.5 0.5 0.5 1 0.5 0.5 0.5 1.5 2.5 0.5 0.5 1 6.5 0.5 0.5 1

1
For brevity, Load, Store, the Cross-Lane and In-Lane operations are abbreviated as L, S, C and I, respectively.

2
Methods for Multiple Load, Data Reorganization and Jigsaw are also abbreviated accordingly (similarly hereinafter).

of the 2D9P stencil is streamlined into an LBV computation

for a 1D3P stencil and one multiply-and-accumulation oper-

ation. This method substantially minimizes redundant data

movement and computational overhead.

Redundancy Reduction Analysis. By flattening dimen-

sions to eliminate vector-dimension conflicts, we signifi-

cantly reduce the redundant shuffle instructions required for

high-dimensional stencil computations. For example, when

applied to a 2D9P stencil, the SDF method reduces the total

register shuffle instructions by 2/3, including 2 cross-lane

instructions and 6 in-lane instructions. This significantly re-

duces the preparation necessitated before calculations in the

innermost loop, effectively eliminating irrelevant pipeline

bubbles and enhancing computational intensity.

Additionally, this method is a general-purpose computing

technique that can be effortlessly applied to higher-order

and higher-dimensional stencils in the same manner, and

can result in better redundancy elimination optimization.

For instance, for a Box-3D27P stencil, the SDF strategy can

reduce 8/9 data shuffling work and make the box stencil

achieve vectorization without redundant data movement.

3.3 Iteration-based Temporal Merging
LBV and SDF significantly reduce the data movement over-

head caused by DAC in the spatial dimensions. However,

redundant shuffle instructions and cache-register data trans-

fers remain problematic in the temporal dimension. To ad-

dress this issue, we propose Iteration-based Temporal Merging
method, which aims to reduce DAC across all dimensions.

By merging multiple iterative time steps, we facilitate intra-

register data reuse in the temporal dimension. Figure 5 illus-

trates the ITM and subsequent SDF computations of Jigsaw,

using the Star-2D5P stencil as an example.

As shown in Figure 5, for the 2D5P stencil, the update of

an element directly depends on its adjacent red and green

neighbors and indirectly on the gray neighbors. If updates

are iteratively performed to obtain the result after two steps,

scalar computation would necessitate 5× 5 + 5 = 30 memory

accesses, whereas vectorized computation would require

5 × 1 + 1 = 6 cross-lane shuffle instructions. However, the

dependent grid points necessitated by the update total only

13, indicating that the necessary memory access and vector

ITM SDF

B

J

H

K

L

I D

G C

E A O F

Dependence, no DAC

Dependence, DAC

Update

C

A O B

D

ITM

Scalar

Vector

1-step
2D5P

2-step
2D13P

Flattening

Coefficient
Merging

1-step 3-vector

2-step 5-vector

Figure 5. Iteration-based Temporal Merging of Jigsaw. After

applying ITM to the 2D5P stencil, it transforms into a 2D13P

stencil. Subsequently, SDF is utilized to eliminate vector-

dimension conflicts within the 2D13P stencil.

dependencies are significantly fewer than the iterative access

count and shuffle instructions.

Hence, we can unfold and merge the coefficients along the

temporal dimension to directly accomplish two-step com-

putations, achieving local fusion of iterations. Specifically,

this entails squaring the old coefficients (𝛼) to derive new

coefficients (𝛽,𝛾 ), which are then distributed to the 13 grid

points required for the two-step computation. Given that the

stencil extended by ITM introduces diagonal dependencies,

we employ SDF to eliminate additional vector-dimension

conflicts. Additionally, it is noteworthy that the new coef-

ficient matrix (the central 9 points) retains its symmetric

properties, thus not incurring extra computational overhead.

Data-movement Reduction Analysis. Following the ap-

plication of ITM, the data transfer volume between cache

and registers in each step of stencil vector computation is re-

duced, alleviating bandwidth pressure. Specifically, we note

that the number of registers required for 2D stencil vector

computation is determined solely by the number of verti-

cal elements and is unaffected by the number of horizontal

elements, as horizontal elements can be reused through in-

register shifts. Consequently, the 2D5P stencil necessitates

5/2 = 2.5 vector registers per step after ITM, which is fewer

than the 3 registers required for a single-step iteration. More-

over, the data transfer volume between registers in each



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

E

A O B

BC A O D

Single Step

Multi Step F

Figure 6. ITM for 1D3P stencil with 3-step fusion.

computation step is significantly reduced, eliminating nu-

merous non-computational shuffle instructions. Specifically,

after ITM, each step requires only 1/2 = 0.5 cross-lane shuf-

fle instructions, while redundant in-lane instructions are

eliminated, significantly enhancing computational density.

Additionally, ITM can perform multi-step fusion on 1D

stencils to further reduce redundant data transfers. For in-

stance, by applying a three-step fusion to a 1D3P stencil, we

can reduce the number of vector load and store instructions

to 1/3 of the original, as illustrated in Figure 6. Simultane-

ously, the cross-lane and in-lane instructions are reduced to

1/3 and 1/2 of their original numbers, respectively. Table 2

presents the number of load, store, cross-lane, and in-lane

operations before arithmetic calculations for various vec-

torization methods across several kernels, demonstrating

that Jigsaw outperforms the Multiple Loads and Multiple

Permutations methods.

4 Evaluation
In this section, we evaluated the performance of Jigsaw
scheme on both Intel and AMD architectures for varied clas-

sic stencils, which are widely used in applications.

4.1 Setup
Machines.We conducted experiments on two different hard-

waremachines to evaluate Jigsaw and obtain results. The first

machine consisted of two Intel Xeon Gold 6230R processors

with 2.10 GHz clock speed, totaling 52 physical cores across

two sockets. Each core contains a 32KB private L1 cache,

a 1MB private L2 cache, and a unified 35.75MB L3 cache.

Another platform is a Microsoft Azure high-performance

node comprising a 2.45 GHz AMD EPYC 7V13 processor. It

has 24 physical cores, each with a 768KB private L1 cache, a

12MB private L2 cache, and a unified 96MB L3 cache. Both

platforms feature the AVX2 SIMD instruction set.

Table 3. Configuration for Stencil Benchmarks

Kernel Points Problem Size Blocking Size

Heat-1D 3 10240000 × 10000 2000 × 1000

Star-1D5P 5 10240000 × 10000 2000 × 500

Star-1D7P 7 10240000 × 10000 2000 × 300

Heat-2D 5 10000 × 10000 × 10000 200 × 200 × 50

Star-2D9P 9 10000 × 10000 × 10000 200 × 200 × 25

Box-2D9P 9 10000 × 10000 × 10000 200 × 200 × 50

Heat-3D 7 256 × 256 × 256 × 1000 20 × 20 × 10

Box-3D27P 27 256 × 256 × 256 × 1000 20 × 20 × 10

Kernels. Our experiments employed two distinct types of

stencils, star and box, across different dimensions (1D, 2D,

3D) to ensure diversity, with specific parameters detailed in

Table 3. Among them, Heat-1D, Heat-2D, and Heat-3D are

the most commonly used basic kernels in stencil optimiza-

tion research [8, 24, 51], which are 1D3P, 2D5P, and 3D7P star

stencils, respectively. We fine-tuned the size and blocking

of each stencil kernel based on relevant work to guarantee

peak performance across all methods. These parameters are

utilized in experiments involving parallel computation in

conjunction with tiling techniques, as § 4.4 and 4.5. In con-

trast, § 4.2 and 4.3 delve deeper into the impact of varying

problem sizes and iteration steps on performance. Conse-

quently, a more diverse set of parameters is employed, as

detailed in the respective subsections.

Benchmarks. Experiments present a comprehensive anal-

ysis of Jigsaw scheme against classical vectorization algo-

rithms (Auto Vectorization [52], Data Reorganization [61]),

highly optimized DSLs (SDSL [24], Pluto [6]) and state-of-

the-art optimization work (Folding [37], Tessellation [60]).

Throughout all benchmarks, the OpenMP scheme was in-

herently supported for parallelization. Additionally, we used

the GCC compiler version 11.2.1 and 9.4.0 on Intel and AMD

platforms, respectively, with the "-O3 -mavx2" optimization

flags enabled.

Matrices. Most work on stencil [10, 11, 39, 62–64] evalu-

ate performance using GStencils/s, denoting the number of

stencil points updated per second, as defined in Equation (3)

GStencil/s =
𝑇 ×∏𝑛

𝑖=1 𝑁𝑖

𝑡 × 109 (3)

where 𝑇 denotes the number of iterations, 𝑛 denotes the

dimensionality of the stencil, 𝑁𝑖 denotes the size of the 𝑖-th

dimension, and 𝑡 denotes the total execution time in seconds.

4.2 Ablation Study
In this subsection, we investigate how Jigsaw benefits from

different optimizations. Figure 7 illustrates the performance

improvements afforded by each optimization on AMD and

Intel machines, taking the typical kernel Box-2D9P as an

example. Moreover, Figure 8 illustrates the changes in data

movement and calculation between vector registers before

and after the application of SDF, also taking the Box-2D9P

kernel as an example.

As depicted in Figure 7, the overall performance exhibits

an upward trend with the increase in problem size and time

iterations. Furthermore, as the input size and time itera-

tions grow, the contribution of different optimizationmethod

tends to stabilize across both machines. Under various prob-

lem sizes and with larger time iterations (≥ 20), each opti-

mization method demonstrates a considerable contribution.

Compared to the direct implementation using only the

Tessellating Tiling [61] algorithm, the introduction of the

LBV optimization resulted in performance improvements of



Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

AMD Intel

AMD Intel

(a) Problem size x

(b) Time iteration t

Figure 7. Performance Breakdown of Jigsaw. Figures (a)

and (b) respectively depict the performance variation with

problem size for a fixed number of time iterations and the

performance variation with the number of time iterations

for a fixed problem size. The line and bar respectively rep-

resent the absolute performance of different optimizations

(left column) and their contribution to the Jigsaw method

(right column).

44.24% and 43.03% on AMD and Intel platforms, respectively.

Subsequently, we introduced the SDF to eliminate vector-

dimension conflicts in the 2D stencil. This method yielded

a significant performance leap on AMD, achieving an im-

provement of 47.51%, and also provided a performance gain

of 16.64% on Intel. This indicates that the method effectively

reduced redundant data movements and minimized pipeline

stalls. Following this, we introduced ITM to eliminate DAC

in the time dimension and enhance computational density,

which brought performance gains of 9.86% and 8.33% on

AMD and Intel, respectively. At this stage, all optimizations

within Jigsaw were fully implemented.

Figure 8 presents the statistical analysis of hotspot events

in vectorization before and after the application of SDF op-

timization, measured by VTune[43]. As illustrated in the

figure, the number of shuffles required during the vectorized

No SDF

SDF

Total

Total

378.74

131.44

477.91

342.12

Figure 8. The impact of SDF on data movement and com-

putation between registers. Vertical bars represent the or-

dered list of hotspot events with execution times exceeding

1s, while horizontal bars indicate the total time spent on

shuffling and calculation throughout the entire vectorized

execution process.

computation process is significantly reduced following the

implementation of SDF optimization, with a concomitant

decrease in computation. This improvement is attributed to

SDF’s ability to eliminate a substantial amount of redundant

vector-dimension conflicts, thereby optimizing the computa-

tional workflow and significantly reducing the proportion of

data movement between vector registers in the computation

process. Specifically, SDF reduces shuffle and computation

time by 61.58% and 20.75%, respectively.

4.3 Sequential Block-free Results
In this subsection, we conducted sequential experiments

without a tiling scheme to investigate the absolute perfor-

mance of a single process across various sizes, in compari-

son with two classical vectorization methods. We selected

four representative kernels that perform vectorized compu-

tations on a single thread, ranging from L1 cache to main

memory. Figure 9 shows the comparison of our methods

with others on AMD and Intel machines, respectively. The

Auto Reorganization and Data Reorganization curves rep-

resent the Multiple Loads employed by the compiler and

the Multiple Permutations technique, respectively. Jigsaw de-

notes the implementation that reduces DAC in the spatial

dimension only (i.e., LBV+SDF), while T-Jigsaw represents

the full-dimensional optimization incorporating ITM. This

notation is consistently used in the subsequent § 4.4 and 4.5.

Star Stencil. The sequential performance results of Heat-

1D and Heat-2D are presented in subfigures (a) and (b). As

shown in Figure 9, our T-Jigsaw method outperforms other

methods significantly on both machines, while Jigsaw also

exhibits noticeable advantages in most cases. However, for



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

(a)Heat-1D (b)Heat-2D (c)Box-2D9P (d)Box-3D27P

In
te

l  
Xe

on
 G

ol
d 

62
30

R
AM

D
 E

PY
C

 7
V1

3AMD

Intel

Figure 9. Absolute sequential performance comparison in single-thread tiling-free on AMD and Intel machine.

AM
D

 E
PY

C
 7

V1
3

In
te

l  
Xe

on
 G

ol
d 

62
30

R

AMD

Intel

Figure 10. Performance and speedup comparison with cache-blocking on multicore AMD and Intel machine. The left column

indicates absolute performance and the right shows the relative speedup ratio. The acceleration value for each method in each

group is calculated relative to the lowest-performing method in that kernel, which is SDSL in this experiment.

tremendous problem size, the performance of Jigsaw and

other methods tends to convergence due to the increasing

cost of data transfer, which becomes the critical bottleneck

of computation. For instance, on the AMD machine, as the

problem size increases from the L1 cache to the memory

hierarchy, all methods exhibit a similar trend of a stair-like

decreasing curve, caused by memory bandwidth limitation.

Box Stencil. The other two subfigures illustrate the 2D9P

and 3D27P Stencil. The Auto Vectorization and Data Reor-

ganization methods introduce vector-dimension conflicts

on all spatial dimensions. Jigsaw’s SDF method effectively

addresses this issue, and achieving significant visible perfor-

mance improvements. However, the performance of T-Jigsaw

method is not as good as Jigsaw’s in 3D box case, as shown

in subfigure (d). It’s due to ITM introduces too many data

dependencies in 3D, which leads to an excess of register load-

ing instructions that are no longer able to reduce the data

transfer volume between cache and vector registers.

4.4 Parallel Cache-Blocking Results
In this subsection, we showcase the experimental integra-

tion of Jigsaw method with cache-tiling and parallelization

schemes, validating the superiority of our approach. Specifi-

cally, we combined the Jigsaw vectorization with Tessellating

Tiling [61] and compared it against SDSL [24], Pluto [8], Tes-

sellation [60] and Folding (spatial) methods [37]. Figures 10

show the comparison with the baseline on two machines.

Taking all stencils with AVX2 instructions into account,

our T-Jigsaw method exhibited remarkably improved perfor-

mance compared to all reference work, achieved the speedup

by an average of 2.148x on AMD and 2.466x on Intel, demon-

strating significant benefits for the large-scale problem. From

the figures, we can visually observe that the performance of

stencil in all methods is related to the dimensionality (1D, 2D,

3D), shape (star, box), and order (1, 2, 3). With the increase

in dimension, performance drastically declines due to the

exponential growth of dependent grid points. In contrast,



Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

0

0

0

AMD EPYC 7V13

0

0

0 52

52

52

(a
)1

D
(b

)2
D

(c
)3

D

Intel Xeon Gold 6230R

AMD Intel

24

24

24

Figure 11. Scalability for stencils of various orders with

different dimensions on multicore AMD and Intel machine.

while shape and order also affect performance, they do not

impose as severe a burden as dimensionality.

Compared with star stencil, our method exhibited greater

advantages for box stencil (from 1.94x to 2.32x on AMD),

benefiting from our SDFmethod, which can greatly eliminate

the data preparation instructions and corresponding time

required for multi-dimensional computation. Additionally,

we implemented a 4-step temporal technique for the 1D-Heat

kernel, which can achieve remarkable performance gains in

the case (3.07x on average).

Additionally, in the figure 10, T-4 Jigsaw represents the

optimization achieved through a 4-step time fusion using

ITM, corresponding to Figure 6. It can be observed that the

introduction of multi-step fusion results in significant per-

formance improvements in the Heat-1D stencil. However, in

higher-dimensional stencils, multi-step fusionmay introduce

greater complexity, such as additional vector-dimension con-

flicts and register spills, which may not always contribute to

performance enhancement. Therefore, we have applied this

technique exclusively to the most effective 1D stencil.

4.5 Multi-Cores Scalability
We also evaluated the scalability of our Jigsaw and T-Jigsaw

on two machines, conducting experiments ranging from

one to all available cores of the processor. The experimental

results were illustrated in Figure 11.

On the AMD platform, our approach exhibits consistent

and excellent scalability, with almost linear scaling achieved

for all kernels in 1D and 2D cases, and significant perfor-

mance improvements obtained through the ITM strategy.

However, the inherent complexity of multi-dimensional sten-

cil computations causes a slight decline in scalability in the

3D case. Additionally, T-Jigsaw no longer retains the perfor-

mance advantage over Jigsaw, primarily attributable to the

heightened requirement for additional load operations dur-

ing the computation of individual vectors. This degradation

becomes more conspicuous when considering the scenario

of a 3D box as opposed to a 3D star stencil.

On the Intel platform,we observed stable scalability growth

in 1D, but different performance curves in the other two cases.

To mitigate the impact of NUMA effects [34] - where pro-

cessor attempts to access remote memory inevitably induce

performance fluctuations due to mounting memory access la-

tency - during scalability testing, for the growing cores, we al-

ternately distribute them between NUMA1 and NUMA2. We

observe that the scalability does not approximate linearity

like the 1D case in higher dimensions, this discrepancy can be

attributed to the inherent complexity of multi-dimensional

stencil computations. Owing to its heightened data depen-

dencies and poorer data locality, multi-dimensional stencil

underutilized the cache, while also being more susceptible

to bandwidth constraints. Furthermore, with the escalating

number of cores, the inter-core communication emerges as

a performance-limiting factor.

Moreover, the impact of stencil shape and order on per-

formance is more vividly illustrated in Figure 11. Figure 11

(a) significantly demonstrates the impact of the order on

performance, while Figures (b) and (c) show the effect of

shape.

4.6 Discussion
In this subsection, we discuss the potential of the Jigsaw

method for performance optimization across various instruc-

tion sets.

Given that all current AVX vector registers are physically

composed of lanes [25], minimizing cross-lane communica-

tion is crucial for optimizing data transfer between registers.

The LBV method effectively reduces this overhead by lever-

aging underlying architectural designs, yielding significant

optimization benefits for AVX, AVX2, and AVX512. Regard-

ing the newly developing instruction set, AVX10, which is

poised to be a superset of the current AVX instruction sets

and compatible with all existing instructions, we anticipate



PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

that LBV will also provide corresponding optimization ben-

efits. Moreover, the SDF and ITM methods are inherently

independent of vector register architecture, serving as uni-

versal optimization strategies. Therefore, we consider Jigsaw

to be a general optimization design based on AVX character-

istics, possessing the potential for performance enhancement

across a variety of instruction sets.

5 Related work
Optimization research on stencil computation has been ex-

tensively studied. The solutions can be broadly categorized

into three directions: improving computational performance,

enhancing data reuse, and boosting data locality.

The compiler community has been engaged in researching

general-purpose vectorization techniques [3, 22, 30, 31, 35,

42, 48]. Previous work has proposed solutions to the issue

of DAC [17, 36, 57, 59]. DLT [23] is a landmark approach

that addresses this problem by using a dimension-lifting

transpose. However, its separation of spatial data into 𝑣𝑙

independent stencils makes it infeasible to perfectly utilize

tiling techniques and enhance data reuse. Folding [37] is

one of the state-of-the-art approaches that addresses the

overhead of data reorganization during vectorization, but it

is limited to rank-1 matrices with parameter proportionality.

Temporal vectorization [59] can perform vector calculations

in the iteration space through vector register groups points

with different time coordinates and is well applicable to the

Gauss-Seidel stencils.

The pursuit of enhancing data reuse through the exploita-

tion of stencil computation characteristics has garneredwide-

spread attention. Semi-Stencil [14] optimize the iteration

computation sequence by incorporating a gather pattern that

alters the computational domain. Stock proposed a frame-

work that enhances data locality and reduces register pres-

sure by exploiting the associativity and commutativity [49].

Rawat introduced LARS [45] strategy, which flexibly sched-

ules register usage. Detiz proposed a compiler optimization

formula called Array Subexpression Elimination (ASE) to

cope with common subexpressions that span cross kernel

loop boundaries [15]. Similarly, Basu utilized the highly sym-

metric coefficients in stencil kernels to achieve data reuse via

partial sums [7]. Yount presented the YASK [58] framework

to vectorize points across the entire data space and generate

high-performance code for 3D high-order stencils. Zhao [66–

68] employed a greedy strategy to enhance instruction-level

parallelism by exploiting block-level reuse. Moreover, Ah-

mad have recently proposed an FFT-based stencil compu-

tation method, offering a novel approach to enhancing the

arithmetic intensity of stencil calculations [1, 2].

Tiling is a powerful technique to enhance data locality

and facilitate cache reuse [26, 33, 53, 54]. In contrast to

fine-grained parallelism in registers enabled by vectoriza-

tion, titling produces a better coarse-grained parallelism

at the cache level between tiles. Representative tiling tech-

niques include Hyper-rectangle Tiling [16, 40, 44, 46], Time

Skewing [28, 47, 55], Diamond Tiling [6, 8], Cache oblivious

Tiling [18, 50, 51], Split Tiling [24], Hybrid Tiling [19] and

Tessellating Tiling [61]. These tilingmethods aremostly com-

piler techniques, and Wonnacott and Strout presented a com-

parison of the scalability of many existing tiling schemes [56].

Several automatic tuning frameworks [12, 21, 29, 65] have

been proposed to accelerate stencil computations using tiling

techniques. This paper integrated our vectorization method

with tessellating tiling to attain optimal performance while

simplifying implementation.

6 Conclusion
This paper proposes Jigsaw, a conflict-free stencil vectoriza-

tion method to reduce DAC across all dimensions through

tessellating swizzled registers with the finest-grained lanes. It

comprises Lane-based Butterfly Vectorization, SVD-based Di-

mension Flattening and Iteration-based Temporal Merging,

adeptly addressing DAC across spatial and temporal dimen-

sions. Experimental results on different machines demon-

strate that Jigsaw outperforms state-of-the-arts with promis-

ing speedup.

References
[1] Zafar Ahmad, Rezaul Chowdhury, Rathish Das, Pramod Ganapathi,

Aaron Gregory, and Yimin Zhu. 2021. Fast Stencil Computations using

Fast Fourier Transforms. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures (Virtual Event, USA) (SPAA
’21). Association for Computing Machinery, New York, NY, USA, 8–21.

https://doi.org/10.1145/3409964.3461803
[2] Zafar Ahmad, Mohammad Mahdi Javanmard, Gregory Croisdale,

Aaron Gregory, Pramod Ganapathi, Louis-Noël Pouchet, and Rezaul

Chowdhury. 2022. FOURST: A code generator for FFT-based fast

stencil computations. In 2022 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). 99–108. https:
//doi.org/10.1109/ISPASS55109.2022.00010

[3] Randy Allen and Ken Kennedy. 1987. Automatic translation of FOR-

TRAN programs to vector form. ACM Trans. Program. Lang. Syst. 9, 4
(oct 1987), 491–542. https://doi.org/10.1145/29873.29875

[4] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt

Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik

Sen, John Wawrzynek, David Wessel, and Katherine Yelick. 2009. A

view of the parallel computing landscape. Commun. ACM 52, 10 (oct

2009), 56–67. https://doi.org/10.1145/1562764.1562783
[5] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.

Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,

and Katherine A. Yelick. 2006. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report UCB/EECS-2006-183.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html

[6] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012.

Tiling stencil computations to maximize parallelism. In SC ’12: Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–11. https://doi.org/10.1109/SC.
2012.107

https://doi.org/10.1145/3409964.3461803
https://doi.org/10.1109/ISPASS55109.2022.00010
https://doi.org/10.1109/ISPASS55109.2022.00010
https://doi.org/10.1145/29873.29875
https://doi.org/10.1145/1562764.1562783
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1109/SC.2012.107
https://doi.org/10.1109/SC.2012.107


Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

[7] Protonu Basu, Mary Hall, Samuel Williams, Brian Van Straalen, Leonid

Oliker, and Phillip Colella. 2015. Compiler-Directed Transforma-

tion for Higher-Order Stencils. In 2015 IEEE International Parallel and
Distributed Processing Symposium. 313–323. https://doi.org/10.1109/
IPDPS.2015.103

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-

pan. 2008. A practical automatic polyhedral parallelizer and locality

optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Tucson, AZ, USA)

(PLDI ’08). Association for Computing Machinery, New York, NY, USA,

101–113. https://doi.org/10.1145/1375581.1375595
[9] Diego Caballero, Sara Royuela, Roger Ferrer, Alejandro Duran, and

Xavier Martorell. 2015. Optimizing Overlapped Memory Accesses in

User-directed Vectorization. In Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing (Newport Beach, California,

USA) (ICS ’15). Association for Computing Machinery, New York, NY,

USA, 393–404. https://doi.org/10.1145/2751205.2751224
[10] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano,

and Satoshi Matsuoka. 2019. A versatile software systolic execu-

tion model for GPU memory-bound kernels. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (Denver, Colorado) (SC ’19). Association
for Computing Machinery, New York, NY, USA, Article 53, 81 pages.

https://doi.org/10.1145/3295500.3356162
[11] Yuetao Chen, Kun Li, Yuhao Wang, Donglin Bai, Lei Wang, Lingxiao

Ma, Liang Yuan, Yunquan Zhang, Ting Cao, and Mao Yang. 2024. Con-

vStencil: Transform Stencil Computation to Matrix Multiplication on

Tensor Cores. In Proceedings of the 29th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Programming (Edinburgh,

United Kingdom) (PPoPP ’24). Association for Computing Machinery,

New York, NY, USA, 333–347. https://doi.org/10.1145/3627535.3638476
[12] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. PATUS:

A Code Generation and Autotuning Framework for Parallel Iterative

Stencil Computations on Modern Microarchitectures. In 2011 IEEE
International Parallel & Distributed Processing Symposium. 676–687.

https://doi.org/10.1109/IPDPS.2011.70
[13] Standard Performance Evaluation Corporation. [n. d.]. SPEC2000.

Accessed: 2024-03-26.

[14] Raúl de la Cruz and Mauricio Araya-Polo. 2014. Algorithm 942: Semi-

Stencil. ACM Trans. Math. Softw. 40, 3, Article 23 (apr 2014), 39 pages.
https://doi.org/10.1145/2591006

[15] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. 2001.

Eliminating redundancies in sum-of-product array computations. In

Proceedings of the 15th International Conference on Supercomputing
(Sorrento, Italy) (ICS ’01). Association for Computing Machinery, New

York, NY, USA, 65–77. https://doi.org/10.1145/377792.377807
[16] Chris Ding and Yun He. 2001. A ghost cell expansion method for

reducing communications in solving PDE problems. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing (Denver, Colorado)

(SC ’01). Association for Computing Machinery, New York, NY, USA,

50. https://doi.org/10.1145/582034.582084
[17] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vec-

torization for SIMD architectures with alignment constraints. In Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Lan-
guage Design and Implementation (Washington DC, USA) (PLDI ’04).
Association for Computing Machinery, New York, NY, USA, 82–93.

https://doi.org/10.1145/996841.996853
[18] Matteo Frigo and Volker Strumpen. 2005. Cache oblivious stencil

computations. In Proceedings of the 19th Annual International Con-
ference on Supercomputing (Cambridge, Massachusetts) (ICS ’05). As-
sociation for Computing Machinery, New York, NY, USA, 361–366.

https://doi.org/10.1145/1088149.1088197
[19] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and

Sven Verdoolaege. 2018. Hybrid Hexagonal/Classical Tiling for GPUs.

In Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (Orlando, FL, USA) (CGO ’14). Association
for Computing Machinery, New York, NY, USA, 66–75. https://doi.
org/10.1145/2544137.2544160

[20] Intel Intrinsics Guide. 2015. URL: https://software. intel. com/sites/-

landingpage. IntrinsicsGuide (18.05. 2018) (2015).
[21] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. 2015. MODESTO:

Data-centric Analytic Optimization of Complex Stencil Programs on

Heterogeneous Architectures. In Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing (Newport Beach, California,

USA) (ICS ’15). Association for Computing Machinery, New York, NY,

USA, 177–186. https://doi.org/10.1145/2751205.2751223
[22] Mark Hampton and Krste Asanovic. 2008. Compiling for vector-thread

architectures. In Proceedings of the 6th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (Boston, MA, USA)

(CGO ’08). Association for Computing Machinery, New York, NY, USA,

205–215. https://doi.org/10.1145/1356058.1356085
[23] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J

Ramanujam, and P Sadayappan. 2011. Data layout transformation for

stencil computations on short-vector simd architectures. In Compiler
Construction: 20th International Conference, CC 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings 20.
Springer, 225–245. https://doi.org/10.1007/978-3-642-19861-8_13

[24] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet, J.

Ramanujam, and P. Sadayappan. 2013. A stencil compiler for short-

vector SIMD architectures. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing (Eugene,

Oregon, USA) (ICS ’13). Association for Computing Machinery, New

York, NY, USA, 13–24. https://doi.org/10.1145/2464996.2467268
[25] Intel. 2022. Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

- Permuting Data Within and Between AVX Registers. (2022).

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-
permuting-data-within-and-between-avx-registers-technology-
guide

[26] F. Irigoin and R. Triolet. 1988. Supernode partitioning. In Proceed-
ings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’88). As-
sociation for Computing Machinery, New York, NY, USA, 319–329.

https://doi.org/10.1145/73560.73588
[27] Mathias Jacquelin, Mauricio Araya–Polo, and Jie Meng. 2022. Scalable

Distributed High-Order Stencil Computations. In SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–13. https://doi.org/10.1109/SC41404.2022.00035

[28] Guohua Jin, John Mellor-Crummey, and Robert Fowler. 2001. Increas-

ing temporal locality with skewing and recursive blocking. In Pro-
ceedings of the 2001 ACM/IEEE Conference on Supercomputing (Denver,

Colorado) (SC ’01). Association for Computing Machinery, New York,

NY, USA, 43. https://doi.org/10.1145/582034.582077
[29] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel

Williams. 2010. An auto-tuning framework for parallel multicore

stencil computations. In 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS). 1–12. https://doi.org/10.1109/IPDPS.
2010.5470421

[30] Ken Kennedy and John R. Allen. 2001. Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

[31] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-

Noël Pouchet, and P. Sadayappan. 2013. When polyhedral trans-

formations meet SIMD code generation. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). Association
for Computing Machinery, New York, NY, USA, 127–138. https:
//doi.org/10.1145/2491956.2462187

https://doi.org/10.1109/IPDPS.2015.103
https://doi.org/10.1109/IPDPS.2015.103
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/2751205.2751224
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3627535.3638476
https://doi.org/10.1109/IPDPS.2011.70
https://doi.org/10.1145/2591006
https://doi.org/10.1145/377792.377807
https://doi.org/10.1145/582034.582084
https://doi.org/10.1145/996841.996853
https://doi.org/10.1145/1088149.1088197
https://doi.org/10.1145/2544137.2544160
https://doi.org/10.1145/2544137.2544160
https://doi.org/10.1145/2751205.2751223
https://doi.org/10.1145/1356058.1356085
https://doi.org/10.1007/978-3-642-19861-8_13
https://doi.org/10.1145/2464996.2467268
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-permuting-data-within-and-between-avx-registers-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-permuting-data-within-and-between-avx-registers-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-permuting-data-within-and-between-avx-registers-technology-guide
https://doi.org/10.1145/73560.73588
https://doi.org/10.1109/SC41404.2022.00035
https://doi.org/10.1145/582034.582077
https://doi.org/10.1109/IPDPS.2010.5470421
https://doi.org/10.1109/IPDPS.2010.5470421
https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1145/2491956.2462187


PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA Yiwei Zhang, Kun Li, Liang Yuan, Haozhi Han, Yunquan Zhang, Ting Cao, and Mao Yang

[32] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ra-

manujam, Atanas Rountev, and P Sadayappan. 2007. Effective auto-

matic parallelization of stencil computations. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (San Diego, California, USA) (PLDI ’07). Asso-
ciation for Computing Machinery, New York, NY, USA, 235–244.

https://doi.org/10.1145/1250734.1250761
[33] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The

cache performance and optimizations of blocked algorithms. In Pro-
ceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Santa Clara, Cali-
fornia, USA) (ASPLOS IV). Association for Computing Machinery, New

York, NY, USA, 63–74. https://doi.org/10.1145/106972.106981
[34] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access):

An Overview: NUMA becomes more common because memory con-

trollers get close to execution units on microprocessors. Queue 11, 7
(jul 2013), 40–51. https://doi.org/10.1145/2508834.2513149

[35] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword

level parallelism with multimedia instruction sets. In Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation (Vancouver, British Columbia, Canada) (PLDI ’00).
Association for Computing Machinery, New York, NY, USA, 145–156.

https://doi.org/10.1145/349299.349320
[36] S. Larsen, E. Witchel, and S. Amarasinghe. 2002. Increasing and de-

tecting memory address congruence. In Proceedings.International Con-
ference on Parallel Architectures and Compilation Techniques. 18–29.
https://doi.org/10.1109/PACT.2002.1105970

[37] Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue. 2021. Reducing

redundancy in data organization and arithmetic calculation for stencil

computations. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis,
Missouri) (SC ’21). Association for Computing Machinery, New York,

NY, USA, Article 84, 15 pages. https://doi.org/10.1145/3458817.3476154
[38] Saeed Maleki, Yaoqing Gao, Maria J. Garzar´n, Tommy Wong, and

David A. Padua. 2011. An Evaluation of Vectorizing Compilers. In

2011 International Conference on Parallel Architectures and Compilation
Techniques. 372–382. https://doi.org/10.1109/PACT.2011.68

[39] Kazuaki Matsumura, Hamid Reza Zohouri, Mohamed Wahib, Toshio

Endo, and Satoshi Matsuoka. 2020. AN5D: automated stencil frame-

work for high-degree temporal blocking on GPUs. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization (San Diego, CA, USA) (CGO 2020). Association
for Computing Machinery, New York, NY, USA, 199–211. https:
//doi.org/10.1145/3368826.3377904

[40] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim,

and Pradeep Dubey. 2010. 3.5-D Blocking Optimization for Stencil

Computations on Modern CPUs and GPUs. In SC ’10: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–13. https://doi.org/
10.1109/SC.2010.2

[41] Dorit Nuzman, Ira Rosen, andAyal Zaks. 2006. Auto-vectorization of in-

terleaved data for SIMD. In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Ottawa,

Ontario, Canada) (PLDI ’06). Association for Computing Machinery,

New York, NY, USA, 132–143. https://doi.org/10.1145/1133981.1133997
[42] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revis-

ited for short SIMD architectures. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(Toronto, Ontario, Canada) (PACT ’08). Association for Computing Ma-

chinery, New York, NY, USA, 2–11. https://doi.org/10.1145/1454115.
1454119

[43] Intel VTune Profiler. 2024. Intel. https://www.intel.com/content/www/
us/en/developer/tools/oneapi/vtune-profiler. Accessed: 2024-08-01.

[44] F. Rastello and T. Dauxois. 2002. Efficient tiling for an ODE discrete in-

tegration program: redundant tasks instead of trapezoidal shaped-tiles.

In Proceedings 16th International Parallel and Distributed Processing
Symposium. 8 pp–. https://doi.org/10.1109/IPDPS.2002.1016667

[45] Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev,

Fabrice Rastello, Louis-Noël Pouchet, and P. Sadayappan. 2018. Asso-

ciative Instruction Reordering to Alleviate Register Pressure. In SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 590–602. https://doi.org/10.1109/SC.2018.00049

[46] G. Rivera and Chau-Wen Tseng. 2000. Tiling Optimizations for 3D

Scientific Computations. In SC ’00: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. 32–32. https://doi.org/10.1109/SC.2000.
10015

[47] Yonghong Song and Zhiyuan Li. 1999. New tiling techniques to im-

prove cache temporal locality. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation (At-

lanta, Georgia, USA) (PLDI ’99). Association for Computing Machinery,

New York, NY, USA, 215–228. https://doi.org/10.1145/301618.301668
[48] Narasimhan Sreraman and Ramaswamy Govindarajan. 2000. A vec-

torizing compiler for multimedia extensions. International Journal of
Parallel Programming 28 (2000), 363–400.

[49] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice

Rastello, J. Ramanujam, and P. Sadayappan. 2014. A framework for

enhancing data reuse via associative reordering. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). Association
for Computing Machinery, New York, NY, USA, 65–76. https://doi.
org/10.1145/2594291.2594342

[50] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter

Seidel. 2010. Cache oblivious parallelograms in iterative stencil

computations. In Proceedings of the 24th ACM International Con-
ference on Supercomputing (Tsukuba, Ibaraki, Japan) (ICS ’10). As-
sociation for Computing Machinery, New York, NY, USA, 49–59.

https://doi.org/10.1145/1810085.1810096
[51] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung

Luk, and Charles E. Leiserson. 2011. The Pochoir Stencil Compiler. In

Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism
in Algorithms and Architectures (San Jose, California, USA) (SPAA ’11).
Association for Computing Machinery, New York, NY, USA, 117–128.

https://doi.org/10.1145/1989493.1989508
[52] Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and

Ernesto Su. 2002. Intel® OpenMP C++/Fortran Compiler for Hyper-

Threading Technology: Implementation and Performance. Intel Tech-
nology Journal 6, 1 (2002).

[53] Michael E. Wolf and Monica S. Lam. 1991. A data locality optimizing

algorithm. In Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation (Toronto, Ontario,

Canada) (PLDI ’91). Association for Computing Machinery, New York,

NY, USA, 30–44. https://doi.org/10.1145/113445.113449
[54] M. Wolfe. 1989. More iteration space tiling. In Proceedings of the

1989 ACM/IEEE Conference on Supercomputing (Reno, Nevada, USA)

(Supercomputing ’89). Association for Computing Machinery, New

York, NY, USA, 655–664. https://doi.org/10.1145/76263.76337
[55] David Wonnacott. 2002. Achieving scalable locality with time skewing.

International Journal of Parallel Programming 30 (2002), 181–221.

[56] David G Wonnacott and Michelle Mills Strout. 2013. On the scalability

of loop tiling techniques. IMPACT 2013 3 (2013).
[57] P. Wu, A.E. Eichenberger, and A. Wang. 2005. Efficient SIMD code

generation for runtime alignment and length conversion. In Inter-
national Symposium on Code Generation and Optimization. 153–164.
https://doi.org/10.1109/CGO.2005.18

[58] Charles Yount, Josh Tobin, Alexander Breuer, and Alejandro Duran.

2016. YASK—Yet Another Stencil Kernel: A Framework for HPC Stencil

Code-Generation and Tuning. In 2016 Sixth International Workshop

https://doi.org/10.1145/1250734.1250761
https://doi.org/10.1145/106972.106981
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/349299.349320
https://doi.org/10.1109/PACT.2002.1105970
https://doi.org/10.1145/3458817.3476154
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1145/1133981.1133997
https://doi.org/10.1145/1454115.1454119
https://doi.org/10.1145/1454115.1454119
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler
https://doi.org/10.1109/IPDPS.2002.1016667
https://doi.org/10.1109/SC.2018.00049
https://doi.org/10.1109/SC.2000.10015
https://doi.org/10.1109/SC.2000.10015
https://doi.org/10.1145/301618.301668
https://doi.org/10.1145/2594291.2594342
https://doi.org/10.1145/2594291.2594342
https://doi.org/10.1145/1810085.1810096
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1145/113445.113449
https://doi.org/10.1145/76263.76337
https://doi.org/10.1109/CGO.2005.18


Jigsaw: Toward Conflict-free Vectorized Stencil Computation by Tessellating Swizzled Registers PPoPP’25, March 01–05, 2025, Las Vegas, NV, USA

on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing (WOLFHPC). 30–39. https://doi.org/10.1109/
WOLFHPC.2016.08

[59] Liang Yuan, Hang Cao, Yunquan Zhang, Kun Li, Pengqi Lu, and Yue

Yue. 2021. Temporal vectorization for stencils. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for

ComputingMachinery, New York, NY, USA, Article 82, 13 pages. https:
//doi.org/10.1145/3458817.3476149

[60] Liang Yuan, Shan Huang, Yunquan Zhang, and Hang Cao. 2019. Tes-

sellating Star Stencils. In Proceedings of the 48th International Con-
ference on Parallel Processing (Kyoto, Japan) (ICPP ’19). Association
for Computing Machinery, New York, NY, USA, Article 43, 10 pages.

https://doi.org/10.1145/3337821.3337835
[61] Liang Yuan, Yunquan Zhang, Peng Guo, and Shan Huang. 2017. Tessel-

lating stencils. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’17). Association for Computing Machinery, New York,

NY, USA, Article 49, 13 pages. https://doi.org/10.1145/3126908.3126920
[62] Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao

Wang, Toshio Endo, and Satoshi Matsuoka. 2023. PERKS: a Locality-

Optimized Execution Model for Iterative Memory-bound GPU Appli-

cations. In Proceedings of the 37th ACM International Conference on
Supercomputing (Orlando, FL, USA) (ICS ’23). Association for Comput-

ing Machinery, New York, NY, USA, 167–179. https://doi.org/10.1145/
3577193.3593705

[63] Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao Wang,

Toshio Endo, and Satoshi Matsuoka. 2023. Revisiting Temporal Block-

ing Stencil Optimizations. In Proceedings of the 37th ACM Interna-
tional Conference on Supercomputing (Orlando, FL, USA) (ICS ’23). As-
sociation for Computing Machinery, New York, NY, USA, 251–263.

https://doi.org/10.1145/3577193.3593716

[64] Yiwei Zhang, Kun Li, Liang Yuan, Jiawen Cheng, Yunquan Zhang, Ting

Cao, and Mao Yang. 2024. LoRAStencil: Low-Rank Adaptation of Sten-

cil Computation on Tensor Cores. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (Atlanta, GA, USA) (SC ’24). IEEE Press, Article 53, 17 pages.

https://doi.org/10.1109/SC41406.2024.00059
[65] Yongpeng Zhang and Frank Mueller. 2012. Auto-generation and auto-

tuning of 3D stencil codes on GPU clusters. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization (San

Jose, California) (CGO ’12). Association for Computing Machinery,

New York, NY, USA, 155–164. https://doi.org/10.1145/2259016.2259037
[66] Tuowen Zhao, Protonu Basu, Samuel Williams, Mary Hall, and Hans

Johansen. 2019. Exploiting reuse and vectorization in blocked sten-

cil computations on CPUs and GPUs. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for

Computing Machinery, New York, NY, USA, Article 52, 44 pages.

https://doi.org/10.1145/3295500.3356210
[67] Tuowen Zhao, Mary Hall, Hans Johansen, and Samuel Williams. 2021.

Improving communication by optimizing on-node data movement

with data layout. In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Virtual Event, Re-

public of Korea) (PPoPP ’21). Association for Computing Machinery,

New York, NY, USA, 304–317. https://doi.org/10.1145/3437801.3441598
[68] Tuowen Zhao, Samuel Williams, Mary Hall, and Hans Johansen.

2018. Delivering Performance-Portable Stencil Computations on CPUs

and GPUs Using Bricks. In 2018 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). 59–70.
https://doi.org/10.1109/P3HPC.2018.00009

[69] Hao Zhou and Jingling Xue. 2016. A Compiler Approach for Exploiting

Partial SIMD Parallelism. ACM Trans. Archit. Code Optim. 13, 1, Article
11 (mar 2016), 26 pages. https://doi.org/10.1145/2886101

https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.1145/3458817.3476149
https://doi.org/10.1145/3458817.3476149
https://doi.org/10.1145/3337821.3337835
https://doi.org/10.1145/3126908.3126920
https://doi.org/10.1145/3577193.3593705
https://doi.org/10.1145/3577193.3593705
https://doi.org/10.1145/3577193.3593716
https://doi.org/10.1109/SC41406.2024.00059
https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1145/3295500.3356210
https://doi.org/10.1145/3437801.3441598
https://doi.org/10.1109/P3HPC.2018.00009
https://doi.org/10.1145/2886101

	Abstract
	1 Introduction
	2 Background
	2.1 Data Alignment Conflict
	2.2 Architecture of Vector Registers

	3 Jigsaw
	3.1 Lane-based Butterfly Vectorization
	3.2 SVD-based Dimension Flattening
	3.3 Iteration-based Temporal Merging

	4 Evaluation
	4.1 Setup
	4.2 Ablation Study
	4.3 Sequential Block-free Results
	4.4 Parallel Cache-Blocking Results
	4.5 Multi-Cores Scalability
	4.6 Discussion

	5 Related work
	6 Conclusion
	References

