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Abstract
While Tensor Core Units (TCUs) excel in AI tasks, their appli-
cation to HPC algorithms like stencil computations faces sig-
nificant challenges due to sparsity, which leads to underuti-
lization and exacerbates memory-bound limitations. This pa-
per introduces FlashFFTStencil1, a memory-efficient sten-
cil computing system designed to bridge FFT to fully-dense
stencil computations on TCUs. Aimed at bound shifting,
FlashFFTStencil comprises three key techniques: Kernel
Tailoring on HBM fuses distinct kernels to enhance paral-
lelism while reducing memory transfer and footprint; Ar-
chitecture Aligning on SMEM restructures FFT-based stencil
computations into dense matrix multiplications tailored for
shared memory architecture; Computation Streamlining on

∗Work done during an internship at Microsoft Research.
†Corresponding author (kunli@microsoft.com).
1FlashFFTStencil is available at https://github.com/HPHEX/FlashFFTStencil.
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TCU optimizes TCU utilization and thread parallelism by
minimizing pipeline stalls and maximizing register reuse.
Notably, a distinctive extension is FlashFFTStencil’s abil-
ity to enable theoretically unrestricted temporal fusion by
FFT. Results show that FlashFFTStencil achieves effective
sparsity-free bound shifting, with an average speedup of
2.57x over the state-of-the-art. FlashFFTStencil pioneers a
new era in unifying computational patterns within the HPC
landscape and bridges them with cutting-edge AI-driven
hardware innovations like TCUs.

CCS Concepts: • Computing methodologies→ Paral-
lel algorithms; • Computer systems organization →
Parallel architectures.

Keywords: Stencil Computation, Fast Fourier Transforms,
Matrix Multiplication, Tensor Core Units

1 Introduction
Deep learning has ignited transformative advancements across
various domains. Since most deep learning models rely on
matrix multiplication (MM) operations [17], both existing
and emerging AI infrastructures have increasingly incorpo-
rated specialized units known as Tensor Core Units (TCUs) to
expedite these computations, with Tensor Cores in NVIDIA
GPUs being a prominent example.
Currently, TCUs are not only popular in deep learning

but also act as important accelerators in more HPC systems.
Many world-leading supercomputers, including 8 out of the
top 10 in the latest TOP500 [68] list, are equipped with TCUs

https://github.com/HPHEX/FlashFFTStencil
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to boost extra performance. Despite the prevalent use of
MM in deep learning models, computational patterns in the
HPC domain are becoming increasingly diverse, extending
beyond just MM. This diversity often leads to TCUs being
underutilized in practical HPC applications.

The Berkeley View identifies sevenwidely-used performance-
critical computing patterns in theHPCfield, known as dwarfs.
Among these, stencil computation is one of the most fre-
quently employed [6, 7, 32]. This pattern involves calculat-
ing the value of a cell in a spatial grid at a given time step
based on the values of neighboring cells from previous time
steps [33, 66]. It is extensively used to simulate the evolution
of physical systems over time in various applications, in-
cluding fluid dynamics [27, 37], electromagnetics [38], earth
modeling [28], and meteorology [5, 9, 61]. Although stencil
computations are crucial for scientific and engineering ap-
plications, they cannot be directly mapped to MM, which is
the sole operation supported by TCUs.

Recent works, such as ConvStencil [15], LoRAStencil [70],
and TCStencil [36], share the core idea of transforming the
data layout of stencil computation into formats that can be
reinterpreted as MM and then mapped onto TCUs. How-
ever, since the specific shape of MM on TCUs typically mis-
aligns with diverse stencil patterns, these transformations
inevitably introduce significant sparsity, i.e., operations on
matrices with many zeros [15, 36]. These zeros are populated
to mask redundant calculations for correct results, leading to
a waste of TCU compute power. Moreover, given that stencil
computations are inherently memory-bound, the increased
sparsity intensifies this performance bottleneck by ampli-
fying data movements between high-bandwidth memory
(HBM) and registers.

To illustrate the impact of this sparsity, we utilize arith-
metic intensity, defined as the ratio of arithmetic operations
to data movement, to pinpoint the bound of current meth-
ods [11, 13, 51]. For FP64 Tensor Cores on the A100 [44],
an arithmetic intensity of at least 10.1 is required to fully
activate the capabilities of TCUs [1, 53]. However, due to the
sparsity in the newly released LoRAStencil, which ranges
from 56.3% to 71.9%, the achieved arithmetic intensity aver-
ages only 7.41 [70], falling short of the necessary threshold.
ConvStencil and TCStencil exhibit even lower arithmetic
intensities, at 3.59 and 2.78, respectively [15, 36]. To the best
of our knowledge, no existing work effectively addresses the
ever-widening gap between the stronger compute power of
TCUs and the memory-bound demands of stencil computa-
tions.
This paper presents a memory-efficient stencil comput-

ing system, FlashFFTStencil, designed to bridge Fast Fourier
Transforms (FFT) to fully-dense stencil computations on
Tensor Core Units with far fewer memory accesses.

The design of FlashFFTStencil is grounded in three crucial
observations: (1) Stencil computations in high-performance
computing and convolutions in deep learning exhibit high
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Figure 1. FlashFFTStencil Overview

similarities, both involving local weighted sumoperations [15];
(2) According to the convolution theorem, memory-intensive
convolution operations in the time domain can be trans-
formed into more computationally efficient multiplication
operations in the frequency domain [31, 34]; (3) FFT con-
tributes to an efficient conversion from time-domain signals
to frequency-domain signals [23]. Guided by these obser-
vations, the key insight is inspired: Given that TCUs are
engineered to accelerate matrix multiplications, can we lever-
age FFT as a bridge to convert the expensive memory operations
into TCU-digestible matrix multiplications for bound shifting?

Despite the shaped insights, efficiently building the FlashFFT-
Stencil system remains a daunting challenge at both the al-
gorithmic and hardware levels. At the algorithmic level, ap-
plying FFT to stencil computations via matrix operations to
increase TCU compute workloads is far from straightforward.
Although the convolution theorem applies to certain con-
volutions, stencil computations vary significantly in kernel
shape and dimensionality. Additionally, time-domain convo-
lutions are converted to frequency-domain multiplications
through FFT, rather than directly into matrix multiplications,
further complicating the design process. At the hardware
level, the hierarchical memory architecture of GPUs intro-
duces varying access latencies and capacities, with larger
memory capacities typically accompanied by higher access
latencies. Efficiently aligning the memory access strategies
of FlashFFTStencil with these diverse memory tiers to miti-
gate bottlenecks necessitates meticulous designs and careful
implementation. As illustrated in Figure 1, FlashFFTStencil
comprises three key techniques to address these challenges:
(1) Kernel Tailoring on HBM. Kernel Tailoring fuses dis-

tinct kernels into a single, optimized kernel. It splits the
original input and distributes these segments across differ-
ent thread blocks, enabling the GPU to execute the fused
FFT-based stencil computations within on-chipmemorywith
a high degree of parallelism. By Kernel Tailoring, FlashFFTS-
tencil achieves over a 3x memory transfer reduction to and
from HBM and an average 9x reduction in memory footprint.
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(2) Architecture Aligning on SMEM. First, 2D Dimension
Alignment is presented to reconfigure the multidimensional
FFT-based stencil computation into 2D matrix multiplica-
tions, converting sparse matrices (up to 87.5% sparsity) into
fully-dense matrices (0% sparsity).Then Diagonal Data In-
dexing is designed for fully coalesced global memory access
while ensuring shared memory access entirely free from
bank conflicts. Additionally, Double-layer Filling repurposes
the complex number format inherent in FFT for real-number
stencil computations, enabling full reuse of both computa-
tion and storage through complex number operations.
(3) Computation Streamlining on TCU. By employing

Swizzling Fragments, FlashFFTStencil eliminates pipeline
bubbles caused by frequent communication with shared
memory, increasing TCU utilization from 54% to 76%. Addi-
tionally, it maximizes thread parallelism through Squeezing
Registers, a technique that analyzes the lifecycle of registers
to retain those about to be reused, thereby freeing up addi-
tional registers and doubling the number of active threads.
The properties of FFT are further leveraged to enhance

temporal fusion, presenting a surprising advantage of FlashFFT-
Stencil. Current work requires pre-calculating fusionweights
for each dimension, leading to parameter explosion and lim-
iting fusion to a few steps (e.g., ConvStencil to 3, LoRASten-
cil to 3). Multiplying the Fourier-transformed input by the
Fourier-transformed stencil raised to the power of time steps
theoretically enables unrestricted temporal fusion.

We conduct a comprehensive evaluation of FlashFFTSten-
cil across various configurations on A100 and H100 GPUs.
The results demonstrate that FlashFFTStencil achieves ex-
ceptionally high arithmetic intensity, fully utilizing TCUs
at 100% capacity, and delivers an average speedup of up to
2.57x compared to the state-of-the-art.
Takeaway Aimed at bound shifting, FlashFFTStencil ef-

fectively bridges the widening gap between the memory-
intensive demands of stencil computation and the stronger
computing power of TCUs, extending the boundaries of
TCU in HPC applications. FlashFFTStencil pioneers a new
era in the unification of computational patterns within the
HPC landscapes—integrating FFT, MM, and stencil compu-
tations—and catalyzes the convergence of traditional HPC
methodologies with cutting-edge AI-driven hardware inno-
vations like TCU.

2 Background and Motivation
2.1 Memory Hierarchy and Tensor Cores on GPU
TheNVIDIAGPU architecture is structured around a scalable
array of multithreaded Streaming Multiprocessors (SMs), op-
timized for the efficient execution of highly parallel tasks [45,
46]. The fundamental execution unit within an SM is a warp,
comprising 32 threads, each with its own dedicated set of
registers [50]. Threads within the same block share access
to a programmable shared memory space, while all threads

can access global memory. As shown in Table 1, the mem-
ory hierarchy adheres to the principle that larger memory
capacities correspond to higher access latencies [44, 53].

Tensor Cores in SMs are specialized hardware units engi-
neered to expedite matrix multiplication and accumulation
(MMA), as delineated in Equation (1). These cores offer sig-
nificantly higher performance than traditional CUDA cores
for MMA tasks [65].

𝐷𝑚×𝑛 = 𝐴𝑚×𝑘 × 𝐵𝑘×𝑛 +𝐶𝑚×𝑛 (1)

Tensor Cores can be programmed at the warp level using
mma instructions in PTX or WMMA API [50]. The WMMA
API uses a specialized data structure called fragments pfor
MMA operations. Developers load data tiles from global or
shared memory into these fragments, which are distributed
across the registers of a warp in a specific configuration (e.g.,
current support in FP64 precision accommodating only with
𝑚 = 8, 𝑛 = 8 and 𝑘 = 4 in Equation (1)) [45, 46].

2.2 Stencil Computation
Stencil computation, a widely used algorithm in scientific
and engineering fields, performs a sequence of temporal
sweeps (called time steps) to iteratively update the value of
each point in a 𝑑-dimensional spatial grid based on a spe-
cific computation pattern [66]. The value of a point at time
𝑡 is a weighted sum of the values of its neighboring points
from the previous time steps. Stencil computations in high-
performance computing and convolutions in deep learning
demonstrate analogous computational patterns, as both in-
volve using a kernel to perform weighted computations on
a sliding window over an input matrix.

2.3 FFT-based Convolution
According to the Convolution Theorem, FFT offers a more
efficient computing method for convolutions by transform-
ing operations to the Fourier domain [54]. This theorem
states that the convolution of two functions in the time do-
main, 𝑌 (𝑡) = 𝑋 (𝑡) ∗ 𝐾 (𝑡), is equivalent to the element-wise
multiplication of their Fourier transforms in the frequency
domain, followed by an inverse Fourier transform to return
to the time domain:

𝑌 (𝑡) = F −1{F {𝑋 (𝑡)} · F {𝐾 (𝑡)}}.

By applying FFT, the convolution operation can be trans-
formed from irregular local point-by-point accumulation op-
erations into efficient frequency-domain multiplication oper-
ations. This conversion significantly enhances both memory

Table 1. Memory Hierarchy

Memory Types Memory Capacity Latency (cycles)

Global Memory 80 GiB / GPU 290
Max Shared Memory 164 KiB / SM 22
Max 32-bit Registers 64 Ki / SM 1
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1: 𝑘𝑓 ← F(𝑘, 𝑁 )
2: for 𝑡 ← 1 to𝑇 do
3: 𝑎𝑡 ← F(𝑎𝑡−1, 𝑁 )
4: 𝑎𝑡 ← 𝑎𝑡 ∗ 𝑘𝑓
5: 𝑎𝑡 ← F−1 (𝑎𝑡 , 𝑁 )
6: end for
7: return 𝑎𝑇

1: for 𝑐 ← 0 to𝐶ℎ𝑎𝑛𝑛𝑒𝑙 − 1 do
2: 𝑘𝑓 ← F(𝑘, 𝑁 )
3: 𝑎1 ← F(𝑎0, 𝑁 )
4: 𝑎1 ← 𝑎0 ∗ 𝑘𝑓
5: 𝑎𝑜𝑢𝑡 ← F−1 (𝑎1, 𝑁 )
6: end for
7: return 𝑎𝑜𝑢𝑡 in all channel

Figure 2. Comparison of FFT-based Stencil (Left) and Con-
volution (Right)

access patterns and computational efficiency, and has been
widely adopted in numerous deep learning applications.

2.4 Opportunity: Sparks from the Collision of
Stencil, Convolution, FFT, MM, and TCU

Applying FFT to stencil computations, similar to its use in
convolutions, transforms point-by-point local accumulation
operations into simpler multiplications in the frequency do-
main. These multiplications, being compute-intensive rather
than memory-bound, help alleviate the memory limitations
typically associated with stencil computations.

In this way, if all computations in stencil computations can
be transformed into compute-intensive multiplications and
then carefully optimized into matrix multiplications, thereby
significantly alleviating the memory bottleneck in stencil
computations, TCUs will substantially accelerate the entire
computational process due to their higher peak computa-
tional performance.

2.5 The Elusive Oasis: Why Existing Work Can’t
Quench the Thirst with This Opportunity?

Although the opportunity appears highly promising, sig-
nificant challenges impede the practical realization of this
insight when striving for a holistic design on HBM, SMEM,
and TCUs. As shown in Figure 2, unlike convolutions,
the substantially larger input sizes and the constraint of
a single channel in stencil computations obstruct any par-
allelism that relies on large channels, leading early works
(e.g. cuDNN/cuFFT) to suffer from limited parallelism and
poor HBM utilization [16, 30, 47, 48, 64] (Section 3.1). Fur-
thermore, the dimensions and computational patterns of
FFT-based stencil andMM introduce diverse alignments
on GPU Shared Memory and Registers, which is not ad-
dressed by many works designed only for special dimen-
sions [19, 34, 54] (Section 3.2). Even more critically, TCU-
related works (e.g. LoRAStencil/ConvStencil/TCStencil) re-
main significantly constrained by factors such as pipeline
efficiency and register occupancy [15, 36, 70] (Section 3.3).
Additionally, the absence of temporal iterations in convolu-
tions—an intrinsic feature of stencil computations—presents
a substantial opportunity to integrate time-step iteration

optimizations into FFT-based stencil approaches on GPU, a
distinctive feature that has not yet been explored by other
studies [2–4, 35] (Section 4).

The complexity arising from the interplay of Stencil, Con-
volution, FFT, MM, and TCU creates a web of genuine chal-
lenges, particularly when interwoven with diverse character-
istics of memory architectures. To the best of our knowledge,
this intricate network of challenges has not been effectively
discerned or addressed by existing research.

3 FlashFFTStencil: System Design
3.1 Kernel Tailoring on HBM
The standard FFT stencil computation is significantly con-
strained by extensive I/O operations with HBM. These con-
straints are primarily due to the substantial memory transfers
required during the computation process. Firstly, computing
the stencil results for a single timestep involves processing
the original input data through three distinct kernels: FFT,
element-wise multiplication, and iFFT. Each of these kernels
requires reading data from and writing data to HBM, necessi-
tating repetitive data round-trips between SRAM and HBM.
Secondly, these three kernels also depend on substantial aux-
iliary data stored in HBM, which must be loaded into SRAM
during computation. As the size of the input data increases,
the amount of auxiliary data grows quadratically, further
exacerbating memory bandwidth consumption and introduc-
ing latency that hinders overall computational efficiency.

The most common approach to accelerate I/O-bound com-
putations is kernel fusion: when multiple operations are
sequentially applied to the same input, kernel fusion allows
the input to be loaded only once, rather than multiple times
by different kernels. However, the limited capacity of on-chip
memory makes it challenging to accommodate the entire
input and perform the computations of all three operators on
SRAM. Moreover, in the context of FFT stencil computations,
poor parallelism is constrained by global data dependencies.
This makes it difficult to distribute data across the SRAM of
each Streaming Multiprocessor (SM) and achieve effective
parallel computation through tiling.
Here, Kernel Tailoring is presented to achieve efficient

memory management and enhanced parallelism at the HBM
level. It consists of three key steps: Splitting the original input
into smaller segments that can be accommodated in SRAM
for parallel computing; Each segment undergoes a fusing
operation that includes FFT, element-wise multiplication,
and iFFT; The outputs, distributed across different SMs, are
gathered back to HBM through a stitching process.
Splitting. Given the input X ∈ R𝑁 and kernel K ∈ R𝑀 ,

where 𝑁 represents the length of the original input data and
𝑀 indicates the length of the stencil computation kernel, the
stencil result for a single timestep can be calculated using
Equation (2), based on the definition of stencil computations
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and the circular convolution theorem [31].

Y[𝑛] = (X ∗ K) [𝑛] ≜
𝑀−1∑︁
𝑚=0

K[𝑚] · X[𝑛 −𝑚] (2)

Kernel Tailoring splits the original input into multiple seg-
ments and loads them from slow HBM to fast SRAM. Each
segment is denoted as x ∈ R𝐿 , where 𝐿 represents the length
of each segment after splitting. The process of splitting can
be expressed by Equation (3).

x[𝑙] ≜

{
X[𝑙 + 𝑖𝑆], 0 ≤ 𝑙 ≤ 𝐿 − 1
0, otherwise.

(3)

x𝑖 represents the data within the 𝑖-th segment after splitting.
𝑆 denotes the size of the stencil result derived from the cur-
rent segment. This size is determined by the segment length
𝐿, as expressed in Equation (4).

𝑆 ≤ 𝐿 − (𝑀 − 1) (4)

The value of 𝐿 is elastically adjustable and can be auto-tuned
to the most efficient value based on on-chip memory of
capacity 𝐶 and the matrix fragment size on the TCU 𝑇 , as
shown in Equation (5).

𝐿 = 𝑎𝑇 (𝑇 − 1), 2𝑎𝑇 2 · 𝑝 ≤ 𝐶, 𝑎 ∈ Z+ (5)

𝑝 denotes the number of blocks executed simultaneously on
a single Streaming Multiprocessor (SM).
As shown in Step 1 of Figure 3, the original input is split

into segments, which are then loaded into SRAM on different
SMs. Each segment undergoes parallel stencil computation
across different blocks in SMs, producing the results y𝑖 for
that segment, as shown in Equation (6).

y𝑖 [𝑙] = (x𝑖 ∗ K) [𝑙] ≜
𝑀−1∑︁
𝑚=0

K[𝑚] · x𝑖 [𝑙 −𝑚] (6)

For 𝑛 ∈ [𝑖𝑆 + 𝑀, 𝑖𝑆 + 𝑆 + 𝑀 − 1], X[𝑛] and x𝑖 [𝑙] have the
same values, where 𝑙 belongs to [𝑀, 𝑆 +𝑀 − 1]. Therefore,
as shown in Equation (7), by computing the stencil result for
the segment in SRAM, the corresponding stencil result for
the original input can be obtained.

Y[𝑛] ≜
𝑀−1∑︁
𝑚=0

K[𝑚] · X[𝑛 −𝑚] =
𝑀−1∑︁
𝑚=0

K[𝑚] · x𝑖 [𝑙 −𝑚] ≜ y𝑖 [𝑙 ] (7)

Fusing. For each partitioned segment of data, stencil com-
putations are performed in SRAM. As illustrated in Figure 3,
the original input data of length 𝑁 is partitioned into mul-
tiple segments, each of length 𝐿. Within each segment, the
data dependencies of the FFT operations are restricted to
that segment, allowing FFT stencil computations to be ex-
ecuted in parallel across different segments. Consequently,
these segments are assigned to different SMs for parallel
computation.
Each segment sequentially loads the FFT matrix F, the

Fourier-transformed kernel data kf , and the iFFT matrix iF
from HBM to perform FFT, element-wise multiplication, and
iFFT operations. Upon completion of each operation, the data

(1)
FFT

(2) (3)
iFFT

F

Step2: Fusing
Stencil Computation in SRAM

Input: N Output: N

FFT Matrix: 
2 x N x N

iFFT Matrix:
2 x N x N

K_f: 
2 x N

2 x L x L
2 x L

iFK_f

Step1: Splitting Step3: Stitching

Segment: L

Element-wise 
Mul

Data on 
HBM

Data on 
SRAM

Not needed after 
Kernel Tailoring 

2 x L x L

Figure 3. Kernel Tailoring of FlashFFTStencil

does not need to be written back to HBM and subsequently
read again. Instead, the next operation is executed directly
in SRAM. This approach effectively fuses the execution of
different kernels within SRAM.
For an original data size of 𝑁 , the standard FFT stencil

computation requires auxiliary data totaling 2(2𝑁 2 + 𝑁 ),
which includes the FFT/iFFT matrices and kf , to be stored in
HBM. After splitting, each segment shares the same auxiliary
data, with only one set of auxiliary data, of size 2(2𝐿2 + 𝐿),
where 𝐿 ≪ 𝑁 , needing to be stored in HBM. As illustrated
in Figure 3, the grey area represents the memory savings
achieved through Kernel Tailoring, which significantly al-
leviates the memory capacity requirements for FFT stencil
computations on GPUs.
Stitching. By performing stencil computation on each

segment x𝑖 , we can calculate the stencil result y𝑖 . As demon-
strated in Equation (7), the computed result y𝑛 for each block
is equivalent to the output y. The subregion [𝑀, 𝑆 +𝑀 −1] in
y𝑖 is then stitched into the overall output data. Through this
stitching process, the stencil results for the entire input are
accurately computed, mathematically equivalent to those
obtained from the standard FFT stencil computation.
By executing the aforementioned three steps—splitting,

fusing, and stitching—Kernel Tailoring significantly reduces
memory transfers, lowers auxiliary data requirements, and
enhances parallelism efficiency at the HBM level.

3.2 Architecture Aligning on SMEM
3.2.1 2D Dimension Alignment. The fragment structure
on TCUs is inherently two-dimensional, aligning with MMA
computations. In contrast, stencil computations are multidi-
mensional, leading to a dimensional conflict when transfer-
ring data from SMEM to TCU. This conflict is particularly
pronounced in one-dimensional stencil computations, where
the Fourier transform involves matrix-vector multiplications.
However, TCUs, optimized for matrix-matrix multiplications,
are inefficient when executing matrix-vector multiplications.
For example, at FP64 precision, Tensor Cores on the Nvidia
A100 only support 8 × 4 × 8 MMA operations [65], leaving
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7 out of 8 columns in the right-hand matrix underutilized.
This underutilization results in computational sparsity, sig-
nificantly diminishing TCU efficiency. To address this, we
propose three steps to align multidimensional input data into
a logically two-dimensional format, enhancing the efficiency
of TCUs in accelerating stencil computation.
Prime-Factor FFT Algorithm (PFA) for Reshaping.

PFA aims to reshape a one-dimensional Fourier transform
of size 𝑁 into a two-dimensional Fourier transform of size
𝑁1 × 𝑁2, where 𝑁1 and 𝑁2 are co-prime integers [12, 20].
By decomposing the computation into smaller, manageable
parts, PFA aligns one-dimensional data into a logically two-
dimensional format on SMEM, enabling the following effi-
cient matrix-matrix multiplications on TCUs.

Chinese Remainder Theorem (CRT) for Reordering
in PFA. CRT provides a way to solve systems of simulta-
neous congruences with pairwise co-prime moduli [52]. It
ensures that a unique solution exists and can be efficiently
computed, which is critical for reordering data in PFA. Let
𝑁 = 𝑁1𝑁2, where 𝑁1 and 𝑁2 are relatively prime. The index
𝑛 of the one-dimensional data and the row/column index
𝑛1/𝑛2 of the reshaped two-dimensional data format satisfy
the relationship given in Equation (8).

𝑛 = 𝑛1𝑁2 + 𝑛2𝑁1 mod 𝑁 (8)

Given that 𝑁1 and 𝑁2 are relatively prime, CRT ensures that
for each 𝑛, there exist integers 𝑛1 and 𝑛2 satisfying the above
equation. Furthermore, modulo 𝑁 , 𝑛1 can be adjusted to lie
between 0 and 𝑁1 − 1, and 𝑛2 can be adjusted to lie between
0 and 𝑁2 − 1.

Multidimensional Data Handling.Higher-dimensional
data (e.g., 3D or more) can also be processed in 2D slices,
as shown in Figure 4. By decomposing multidimensional
data into 2D slices, the data can be efficiently adapted for
TCU operations without encountering computational spar-
sity. Additionally, this approach facilitates the distribution of
data across multiple SMs, enabling parallel processing, with
each SM independently handling a specific slice of the data.

3.2.2 Diagonal Data Indexing. FlashFFTStencil achieves
the mapping of multidimensional data to TCUs for computa-
tion. However, the data reordering process of PFA on GPUs
is highly time-consuming. This process involves numerous
modulo operations, which are computationally inefficient
on GPUs. Furthermore, data reordering involves random
memory accesses, which can easily lead to bank conflicts in
SMEM, thereby reducing memory bandwidth utilization.
In this section, we address the aforementioned problem

with a novel diagonal indexing strategy that employs fine-
grained control of bank access, thereby eliminating the need
for data reordering in the PFA algorithm. Our approach is
founded on the following observations: Observation 1: The
bank mechanism in SMEM guarantees that memory access
efficiency is decoupled from the continuity of memory access
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Figure 4. Architecture Aligning of FlashFFTStencil, (a)
illustrates 2D Dimension Alignment, (b) depicts Diagonal
Data Indexing assuming the bank length is eight, and (c)
represents Double-layer Filling of Complex Numbers.

addresses. Observation 2: The data reordering process in PFA
can be supplanted by a specialized data indexing approach.
Observation 3: The data indexing process can obviate the
time-intensive modulo operations involved in the reordering
method of PFA.

After employing the Kernel Tailoring technique, multiple
segments are managed by distinct thread blocks on the SM.
As depicted in Figure 4(b), the threads within each thread
block coalesce to read the data of the current segment from
HBM and store it to SMEM. The thread block employs co-
alesced memory transactions as the fundamental unit for
accessing HBM, thereby optimizing the utilization of its
memory bandwidth. Threads within each thread block store
data into SMEM using the diagonal data indexing strategy
where both the row index 𝑛1 and the column index 𝑛2 are
incremented continuously. For instance, as illustrated in Fig-
ure 4(b), the first data element in the current segment, A, will
be stored at the position with the row/column index 0/0 on
SMEM. The row/column index of the second data element B
will increment to 1/1. Following the diagonal indexing strat-
egy, elements C and D will be stored at the position with
the row/column index of 2/2 and 3/3. When either the row
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or column index exceeds 𝑁1 or 𝑁2, respectively, the index
resets to 0 and continues incrementing until all data from
the segment has been loaded into SMEM. On the right side
of Figure 4(b), the purple lines within the SMEM of thread
block 2N+1 indicate the trace of data storage in SMEM. This
ensures that during each memory transaction, all threads
within a thread block access different banks in SMEM. This
approach maximizes the utilization of memory bandwidth
from HBM to SMEM.
By fully leveraging memory optimization techniques of

the GPU architecture, the additional challenges introduced
by Dimension Alignment can be effectively addressed. This
enables efficient Dimension Alignment from HBM to SMEM
for FlashFFTStencil.

3.2.3 Double-layer Filling of Complex Numbers. Fol-
lowing Dimension Alignment and Diagonal Indexing, the
data is prepared on SMEM and subsequently loaded into frag-
ments for the TCUs to perform stencil computations, com-
prising FFT, element-wise multiplication, and iFFT. However,
there are distinct misalignments of the data types in FFT and
stencil computation which we refer to as the Complex Num-
bers Disaster. Specifically, (1) the input and output of stencil
calculations are real numbers; however, the intermediate
variables in Fused Stencil Computations are complex, requir-
ing twice the storage space of the input data; (2) complex
multiplication requires four real multiplications and three
real additions, significantly increasing the workload on com-
putational units of GPUs, which are primarily designed for
real number calculations. To address Complex Numbers Dis-
aster, the computational complexity and storage overhead
introduced by FFT, we propose the Double-layer Filling tech-
nique, leveraging the properties of the real number Fourier
transform.
Double-layer filling leverages the conjugate symmetry

of the Fourier transform of real inputs, as shown in Equa-
tion (9) [42, 62].

𝑋𝑛−𝑖 = 𝑋 ∗𝑖 (9)

𝑋 denotes the data obtained by performing the Fourier trans-
form on the real input, and ∗ denotes the conjugate symmetry
operation. As shown in Figure 4(c), we use another segment
in next thread block as the imaginary part to fill the cur-
rent segment, forming a single segment of data treated as
complex data for FFT stencil computations. By employing
Double-layer Filling, we can derive the stencil results for
two real segments using a single FFT stencil computation.
Respectively, the real and imaginary parts of the complex
result correspond to the first and second segments of the
stencil result.
This method of filling input data for combined compu-

tation significantly mitigates the computational explosion
caused by the Complex Numbers Disaster. Additionally, it
reduces the memory required to store intermediate data by

half, making it equivalent to the memory footprint of the
input data.

3.3 Computation Streamlining on TCU
Kernel Tailoring on HBM allows the FFT stencil algorithm to
be executed on GPUs in a memory-efficient manner using a
fused kernel. Architecture Aligning on SMEM leverages the
memory optimization technology of GPUs to efficiently pre-
pare data for optimal computation on TCUs. In this section,
we introduce the Computation Streamlining of FlashFFT-
Stencil, which is designed to achieve efficient FFT stencil
computation through a series of matrix operations on TCUs.

Algorithm 1 Computation Streamlining of FlashFFTStencil with
Matrix Operations (⊗ denotes matrix multiplication on TCU)
Ensure: yi in SMEM
Require: FFT matrices F1, F2 ∈ C𝑁×𝑁 , stencil kernel kf ∈ C𝑁×𝑁 ,

input data xi ∈ C𝑁×𝑁 in SMEM
1: xi ← (F1 ⊗ xi) ⊗ F2
2: xi ← xi ∗ kf
3: F−11 , F−12 ← F1, F2
4: yi ← F−11 ⊗ (xi ⊗ F−12 )
5: return yi

We present the pseudocode for Computation Streamlining
of FlashFFTStencil on TCU in Algorithm 1. Once the input
data has undergone 2D Dimension Alignment and is well-
prepared in SMEM, it can be directly loaded into the frag-
ments used for TCU computation. As shown in line 1, the in-
put data, already reshaped as a matrix, undergoes the Fourier
transform by being left-multiplied and right-multiplied by
the FFT matrix. In line 2, the transformed xi is element-wise
multiplied with the Fourier-transformed stencil kernel kf .
Line 3 illustrates the computation of the inverse FFT (iFFT)
matrix using the FFT matrix. The real part of the FFT matrix
is identical to that of the iFFT matrix and their imaginary
parts are negatives of each other. Due to the numerical re-
lationship between the iFFT matrix and the FFT matrix, the
iFFT matrix can be easily derived from the FFT matrix. In
line 4, xi undergoes the inverse Fourier transform through
two matrix multiplications (similar to line 1). By transform-
ing the FFT stencil computations into matrix multiplication
operations, we can significantly enhance computation per-
formance, fully leveraging the computational capabilities of
TCU.

Although the aforementioned Computation Streamline is
highly efficient, profiling the initial implementation of the
FlashFFTStencil algorithm revealed two significant perfor-
mance bottlenecks: low TCU pipeline utilization and low
parallelism within the SMs. Subsequently, we will discuss
how we addressed these issues through Swizzling Fragments
and Squeezing Registers.
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Figure 5. Pipeline Bubbles Removal by Swizzling Fragments

Pipeline Bubbles Removal by Swizzling Fragments.
We identified that the low TCU pipeline utilization is at-
tributable to the time-consuming data transfers between
consecutive matrix multiplications (as shown in line 1 and
line 4 of Algorithm 1). For instance, transferring data from
fragment C to fragment A at FP64 precision requires SMEM
for communication. This results in redundant data trans-
fers from registers (fragment C) to SMEM and then back
to registers (fragment A), causing suboptimal TCU pipeline
utilization.
To address this issue, we propose Swizzling Fragments,

which avoids data transfers through SMEM by directly trans-
ferring data from one register to another. Swizzling Frag-
ments is designed based on the principle of row and column
permutation invariance in matrix multiplication. As depicted
in Figure 5, the result matrix from the previous matrix multi-
plication, stored in fragment C, can be directly transferred to
fragment A without passing through SMEM by leveraging
the correspondence between the data layouts of fragment C
and A. Consequently, it is necessary to rearrange the rows
of the FFT Matrix accordingly. This rearrangement is per-
formed during the generation of the FFT Matrix, thereby
incurring no additional storage or data transfer overhead.
As shown in Figure 5, the data transfers from fragment C
to fragment A correspond precisely to the rearrangement
order of the FFTMatrix. This method ensures the correctness
of the computation while avoiding data transfers through
SMEM.

As illustrated in the instruction pipeline of Figure 5, Swiz-
zling Fragments significantly reduces the overhead of data
transfers between consecutivematrixmultiplications, thereby
markedly enhancing TCU pipeline utilization.

Thread Parallelism Enhancement by Squeezing Reg-
isters. We identified that the primary factor affecting the
parallelism is the substantial demand for registers following
Kernel Tailoring. For GPU kernels, excessive register usage

per thread significantly impairs parallelism. To mitigate this
issue, we employed Squeezing Registers and recomputation
to minimize register usage, thereby maximizing parallelism.
Squeezing Registers involves utilizing the same registers

to store different data at various stages of kernel execution,
thereby performing distinct computational operations. For
example, the fragment C involved in matrix multiplication
in line 1 will be repurposed to store kf and participate in
element-wise multiplication in line 2. Additionally, by lever-
aging the numerical relationship between the FFT matrix
and the iFFT matrix—where the real parts are identical and
the imaginary parts are negatives of each other—we can
recompute iFFT matrix from FFT matrix. This method re-
duces the number of registers required to store iFFT matrix,
thereby minimizing overall register usage. Consequently, we
employed both squeezing registers and recomputation to op-
timize computations, thereby enhancing thread parallelism.

Through the two optimization techniquesmentioned above,
we have significantly enhanced the performance of FlashFFT-
Stencil on GPUs. These techniques enable memory-efficient
stencil computations to leverage TCUs for higher computa-
tional performance.

4 Extension: Temporal FlashFFTStencil
Extensive research has concentrated on temporal fusion to
enhance parallelism and data locality in stencil computa-
tions, thereby optimizing their overall performance. How-
ever, these methods generally rely on fixed temporal fusion,
lacking flexibility. (1) This limitation is mainly due to the
parameter explosion resulting from temporal fusion, which
restricts fusing a limited number of timesteps in order to
achieve performance enhancements. (2) Prior work on TCUs,
such as ConvStencil, has been limited by the size of the TCU
fragments, significantly impacting the flexibility of temporal
fusion.

However, the flexibility of temporal fusion is essential for
the effective application of stencil computations. In certain
scenarios, the requirement to output results at each time step
precludes the optimization of temporal fusion. Furthermore,
In certain scenarios, application scenarios may necessitate re-
trieving stencil computation results after specific time steps.
Thus, the flexibility of temporal fusion is one of the most
critical aspects of the extensibility of stencil algorithms.
The temporal fusion of FlashFFTStencil possesses the

aforementioned extensibility. The properties of the FFT Sten-
cil algorithm are further leveraged to enhance temporal fu-
sion, presenting a surprising advantage of FlashFFTSten-
cil [2, 4]. It can perform element-wise multiplication on 𝑘𝑓
(i.e., 𝑘𝑓 ∗𝑘𝑓 ) to achieve temporal fusion, which is highly con-
ducive to the GPU architecture. As shown in Equation (10),
performing element-wise multiplication𝑇 times corresponds
to fusing𝑇 timesteps, unimpeded by hardware or algorithmic
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constraints [3, 35].
𝑎𝑇 = F −1 (F (𝑎0) ∗ 𝑘𝑓 ∗ ... ∗ 𝑘𝑓︸        ︷︷        ︸

𝑇

) (10)

𝑎0 denote the initial input for the stencil computation and
𝑎𝑇 denote the result after 𝑇 time iterations. This seamless
integration of temporal fusion into FlashFFTStencil further
enhances the advantages of the FlashFFTStencil algorithm.
FlashFFTStencil exhibits a performance advantage over

other stencil algorithms even without temporal fusion. By
incorporating temporal fusion, FlashFFTStencil not only en-
hances its extensibility but also further amplifies its perfor-
mance superiority compared to other stencil algorithms.

5 Evaluation
5.1 Experimental Setup
Machines.Our experiments, conducted across distinct GPUs
as detailed in Table 2, underscore the advantages of FlashFFT-
Stencil across various hardware configurations.
State-of-the-arts. We conducted a comprehensive analysis
by comparing FlashFFTStencil with various state-of-the-art,
including cuFFT-based Stencil [30, 48, 64], cuDNN-based
Stencil [16, 47], DRStencil [75–77], Brick [75–77], TCSten-
cil [15, 36], ConvStencil [15], and LoRAStencil [70].
Benchmarks. To thoroughly evaluate the performance of
FlashFFTStencil across diverse stencil computations, we em-
ploy stencil kernels with varying configurations, including
1D, 2D, and 3D computations. The specific details are out-
lined in Table 3 [15, 25, 72].
Metrics.We utilize both the total execution time 𝑡 and the
𝐺𝑆𝑡𝑒𝑛𝑐𝑖𝑙/𝑠 value [14, 15, 41, 70–74], which reflects the com-
putational speed of the stencil algorithm, as key performance
evaluation metrics.

5.2 Ablation Study
Performance Breakdown. In this section, we explore how
FlashFFTStencil achieves performance improvements. Fig-
ure 7 presents a detailed performance breakdown of FlashFFT-
Stencil with Heat-1D stencil kernel. Similar results are ob-
served for other shapes of FlashFFTStencil computations,
regardless of the number of time steps fused. Compared to
standard FFT stencil computations (based on cuFFT best im-
plementation), the application of Kernel Tailoring results
in a 4.68x performance improvement. The introduction of
FP64 Tensor Cores further enhances efficiency by 1.62x. Sim-
ilarly, the Architecture Aligning and Computation Stream-
lining techniques provide performance gains of 1.4x and

Table 2. Configuration for Hardware Platforms.

ID GPU FP64 FP64 TC. Bandwidth

A NVIDIA H100 SXM 80GB 34 TFLOPS 67 TFLOPS 3350 GB/s
B NVIDIA A100 PCIe 80GB 9.7 TFLOPS 19.5 TFLOPS 1935 GB/s

1.08x, respectively. As illustrated in Figure 7, FlashFFTSten-
cil achieves nearly an 11.25x speedup compared to standard
FFT stencil computations. Consequently, it is evident that all
the optimization techniques in FlashFFTStencil significantly
contribute to performance enhancement.
Technique I: Kernel Tailoring. We conducted a de-

tailed analysis of the advantages provided by Kernel Tailor-
ing. We compared the memory footprint of FlashFFTStencil,
which employs Kernel Tailoring techniques, with the best-
performing standard FFT Stencil implementation based on
cuFFT. As illustrated in Figure 8, FlashFFTStencil achieved a
reduction in memory footprint by a factor of 7-9 compared
to the best cuFFT-fft implementation.

Technique II: ArchitectureAligning.WeutilizedNsight
Compute to perform a comprehensive memory workload
analysis, aimed at validating the efficacy of Architecture
Aligning. Table 4 presents the proportion of uncoalesced
memory accesses and the average shared store bank con-
flicts per request for FlashFFTStencil across various stencil
kernel configurations. Applying Architecture Aligning, both
metrics exhibit a significant reduction.
Technique III: Computation Streamlining. Similarly,

we conducted an analysis of the computeworkload of FlashFFT-
Stencil using Nsight Compute. Computation Streamlining
enhances the efficiency of TCU utilization in FlashFFTStencil
by reducing pipeline bubbles. Table 4 presents the improve-
ments in TCU pipeline utilization.

Table 3. Configuration for Stencil Benchmarks

Kernel Kernel Points Problem Size Time Step

Heat-1D 3 512𝑀 1000
1D5P 5 512𝑀 1000
1D7P 7 512𝑀 1000

Heat-2D 5 16𝐾 × 16𝐾 1000
Box-2D9P 9 16𝐾 × 16𝐾 1000
Heat-3D 7 768 × 768 × 768 1000

Box-3D27P 27 768 × 768 × 768 1000

Table 4. Memory workload analysis with or without architecture
aligning and Compute workload analysis with or without compu-
tation streamlining for FlashFFTStencil with different kernels

Metrics Stencil Kernels Avg.
1D3P 2D9P 3D27P

UGA-w/o 36.12% 25.37% 15.48% 25.65%
UGA-w 1.34% 5.41% 5.68% 4.14%

BC/R-w/o 1.31 0.97 0.84 1.04
BC/R-w 0.21 0.59 0.30 0.36

PU-w/o 64.32% 59.24% 40.06% 54.54%
PU-w 80.21% 79.30% 68.86% 76.12%

1 UGA denotes the percentage of uncoalesced global accesses.
2 BC/R denotes the average shared store bank conflicts per request.
3 PU denotes the percentage of TCU pipeline Utilization.
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Figure 6. Speedup and execution time of FlashFFTStencil over the state-of-the-art stencil implementations on H100
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Extension: Temporal FlashFFTStencil.Among the state-
of-the-art methods specifically developed for stencil compu-
tations, none offer the flexibility to freely control the number
of fused time steps, except for cuFFT-based stencil, which
are based on the theoretical foundations of the Standard
FFT stencil algorithm [15, 26, 57, 70]. Consequently, as de-
picted in Figure 9, we compared FlashFFTStencil with the
cuFFT-based stencil to validate the performance advantages
of FlashFFTStencil with temporal fusion on distinct GPU.

Figure 9. The Performance Advantages of 1D Temporal
FlashFFTStencil on A100 and H100
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Figure 10. Comparison of arithmetic intensity and sparsity
with TCU-based stencil computations

5.3 Overall Performance Comparison
We evaluate the execution time and corresponding speedup
of FlashFFTStencil compared with all state-of-the-art meth-
ods on H100 as shown in Figure 6.

Firstly, FlashFFTStencil demonstrates a substantial perfor-
mance improvement over indirect stencil computations using
the best implementation based on cuFFT and cuDNN, achiev-
ing performance gains ranging from a minimum of 1.9x to a
maximum of 103.0x speedup. This enhancement is primarily
attributed to the lack of specialized optimizations for stencil
computations in these two methods. Secondly, FlashFFTS-
tencil demonstrates an average speedup of approximately
5.8x over Brick and 2.9x over DRStencil. Lastly, compared to
prior stencil methods on TCU, TCStencil, ConvStencil, and
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LoRAStencil, FlashFFTStencil achieves average speedups of
2.56x, 2.57x, and 2.44x, respectively. We will provide a more
comprehensive analysis and comparison with these stencil
methods using TCUs in the following subsection. It is note-
worthy that, since TCStencil only supports FP6 precision
for stencil computations, we employed the same evaluation
methodology as used in ConvStencil [15, 70]. Additionally,
given that LoRAStencil reduces the effective computational
workload by 50% through the exploitation of kernel symme-
try, we adjusted its execution time by multiplying a factor
of 2.

5.4 Comparison with Stencil using TCU
In this subsection, we will perform a comparative analysis
of FlashFFTStencil with existing stencil methods using TCU,
including TCStencil, ConvStencil, and LoRAStencil. First, as
illustrated by the data on the right vertical axis in Figure 10,
we measured the sparsity of data within fragments during
the execution on TCUs, defined as the ratio of the number of
zeros value to the total number of data in the fragments. All
of thesemethods demonstrate a sparsity of no less than 24.5%,
which inevitably increases the memory workload to some
extent. In contrast, FlashFFTStencil achieves fully dense TCU
computations. Secondly, due to the bound-shifting effect of
bridging FFT to stencil, a portion of the memory workload is
converted into compute workload, significantly enhancing
arithmetic intensity beyond that of ConvStencil and the turn-
ing point of A100 and H100. Furthermore, this heightened
arithmetic intensity suggests that future GPUs with supe-
rior peak computational capabilities, such as the B100 [49],
will yield even greater performance gains compared to other
stencil methods.

6 Related Work
Research on accelerating stencil computations has been ex-
tensively explored on the different hardware architectures.
On CPUs [32, 72], vectorization techniques enhance par-

allelism in stencil computations by leveraging SIMD instruc-
tions [24, 25, 32]. Data reuse strategies effectively allevi-
ate the memory bottleneck associated with stencil compu-
tations [58, 63, 75]. Additionally, cache optimizations and
tiling are widely employed techniques for improving perfor-
mance [8, 29, 69, 72]. There have been attempts to optimize
stencil computations using FFT on CPUs [2–4, 35], but no
such efforts have been studying on GPUs.

Extensive research has also been conducted on optimizing
stencils on GPUs [40, 55, 59]. Tiling, a prevalent technique
for optimizing stencil computations on GPUs, enhances par-
allelism and data locality [10, 18, 21, 26, 39, 43, 56, 67, 75]. Ad-
ditionally, loop unrolling [22], prefetching [60], and stream-
ing [59] techniques are widely used for optimizing stencil
computations. Furthermore, TCStencil, ConvStencil, and Lo-
RAStencil [15, 36, 70] represent recent efforts to leverage

TCUs on GPUs. However, these approaches introduce signif-
icant sparsity into the computations, which can impact the
overall performance of stencil calculations.

7 Conclusion
This paper presents FlashFFTStencil, a memory-efficient
stencil computation system designed with the objective of
bound shifting to bridge FFT for fully-dense stencil compu-
tations on TCUs. FlashFFTStencil is composed of three
core techniques: Kernel Tailoring, Architecture Aligning,
and Computation Streamlining. Results show that FlashFFT-
Stencil achieves effective sparsity-free bound shifting, with
a 2.57x average speedup over the state-of-the-art.
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