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Abstract
AI infrastructures, predominantly GPUs, have delivered re-
markable performance gains for deep learning. Conversely,
scientific computing, exemplified by quantum chemistry sys-
tems, suffers from dynamic diversity, where computational
patterns are more diverse and vary dynamically, posing a
significant challenge to sponge acceleration off GPUs.

In this paper, we proposeMatryoshka, a novel elastically-
parallel technique for the efficient execution of quantum
chemistry system with dynamic diversity on GPU. Ma-
tryoshka capitalizes on Elastic Parallelism Transformation,
a property prevalent in scientific systems yet underexplored
for dynamic diversity, to elastically realign parallel patterns
with GPU architecture. Structured around three transforma-
tion primitives (Permutation, Deconstruction, and Combi-
nation), Matryoshka encompasses three core components.
The Block Constructor serves as the central orchestrator,
which reformulates data structures accommodating dynamic
inputs and constructs fine-grained GPU-efficient compute
blocks. Within each compute block, the Graph Compiler
operates offline, generating high-performance code with
clear computational path through an automated compila-
tion process. The Workload Allocator dynamically schedules
workloads with varying operational intensities to threads
online. It achieves highly efficient parallelism for compute-
intensive operations and facilitates fusion with neighbor-
ing memory-intensive operations automatically. Extensive
evaluation shows that Matryoshka effectively addresses
dynamic diversity, yielding acceleration improvements of
up to 13.86× (average 9.41×) over prevailing state-of-the-art
approaches on 13 quantum chemistry systems.

∗Work done during an internship at Microsoft Research.
†Corresponding author.

1 Introduction
Deep learning, powered by AI infrastructures like GPUs,
has sparked transformative revolutions in various AI sys-
tems [17, 21, 27, 28, 48, 56]. Concurrently, scientific com-
puting assumes an equally vital role, propelling break-
through research in various scientific domains [15, 18, 31].
However, an intriguing observation lies in the prevailing
state where the numerical scientific computing systems pre-
dominantly revolve around case-by-case optimizations on
CPUs [5, 16, 29, 37, 57]. A noticeable dichotomy emerges as
deep learning and scientific computing appear to progress
as parallel entities. This intriguing scenario prompts a com-
pelling question: Why the absence of systematic efforts to
integrate AI infrastructures like GPUs into scientific com-
puting?
This paper aims to unravel this puzzle by delving into

quantum chemistry systems within scientific computing.
Quantum Chemistry (QC) [10, 23, 26] is a pivotal scientific
discipline that investigates the quantum mechanical prop-
erties of atomic and molecular systems. The profound in-
sights gleaned from computational quantum chemistry find
extensive applications across diverse industries, including
materials science [41, 42], pharmaceuticals [12], and energy
production [20].
Notwithstanding its transformative potential, the formi-

dable computational complexity of QC poses a substantial
demand on computing resources, thereby impeding progress
within the scientific domain. With the booming rise of AI
techniques, accelerators, primarily GPUs, have been increas-
ingly employed to expedite QC systems.
While GPU could deliver a promising performance, par-

ticularly in General Matrix Multiply (GEMM) operations
on tensors predominant in AI systems, it is imperative to
recognize that computational patterns in scientific systems
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Figure 1. Comparison between AI system and QC system.

are significantly more diverse, i.e., a single system is built
by various distinct operations with polymorphic data struc-
tures. Adding to this complexity, these diverse computational
patterns are often varying at compile time or influenced by
inputs at runtime, i.e., dynamic diversity. This introduces
indiscernible and unpredictable performance bottlenecks in
scientific systems, making optimization challenging without
sufficient priors, as shown in Figure 1.

As a fundamental system in scientific computing, QC grap-
ples with the significant challenge of dynamic diversity, evi-
dent across three primary misalignments against GPU archi-
tecture. These include polymorphic data structures causing
divergent execution instructions, ambiguous computational
paths contributing to a complex computing landscape at
compile time, and variable operational intensity spanning
compute-intensive to memory-intensive workloads at run-
time.
In the presence of dynamic diversity, efficiently transi-

tioning from CPU-centric to GPU-centric architectures for
QC systems remains a substantial challenge, with the ma-
jority of current work still rooted in CPU-centric designs.
Existing GPU-based QC systems typically perform a fixed
optimization strategy on diverse operators known at compile
time [8, 32–35, 50–53]. However, this static parallelism lacks
adaptability to dynamic changes in tasks during runtime,
leading to a noticeable decrease in GPU utilization. While
fine-grained, operator-wise runtime solutions exist, their
applicability is constrained to supporting a single module
within the QC system. The concatenation of these operators
to construct a comprehensive system introduces significant
overhead for data layout conversion across diverse opera-
tors [50–53]. Furthermore, this approach may lead to per-
formance conflicts when alternative techniques are applied
to different operators. Beyond the performance impact, the
re-design of operators for mapping to GPU SIMT architec-
ture and the data layout conversion between operators can
also incur accuracy loss, which hardly meets the stringent
requirements of scientists from a physics perspective [8, 32–
35].

In this paper, we presentMatryoshka, a novel elastically-
parallel technique for the accurate and efficient execution of
quantum chemistry system with dynamic diversity on GPU.
The cornerstone of Matryoshka is Elastic Parallelism

Transformation, a property prevalent in scientific systems
yet underexplored for dynamic diversity. Most scientific oper-
ators have one or more dimensions (we call them EPT-axes),
whose computation can be arbitrarily reordered without af-
fecting the result. For instance, in a QC system, contracted ba-
sis functions operator𝜓𝑎 are fixed linear combinations of fun-
damental basis function𝜙𝑎𝑘 , given by𝜓𝑎 (r) =

∑𝐾
𝑘
𝐷𝑎𝑘𝜙𝑎𝑘 (r).

Leveraging EPT,Matryoshka decouples𝜓𝑎 along an EPT-
axis (𝑘 dimension) into multiple compute tiles. These tiles
serve as parallelism-friendly units of the operator𝜓𝑎 at vari-
ous stages, allowing them to be permuted in any order, decon-
structed along the intrinsic EPT-axis, and combined to larger
size for realigning an efficient parallelism on GPU elastically.
Through the manipulation of compute tiles along EPT-

axes,Matryoshka achieves the best of both worlds. It can
achieve fine-grained, dense compute tile coverage of diverse
operators without incurring layout transformation overhead,
while promote highly-adapted parallelism with exhaustive
GPU utilization.
A significant challenge to leverage Elastic Parallelism

Transformation is how to capture and address the dynamic
characteristics effectively. Matryoshka tackles this chal-
lenge by the design of divergence-free Block Constructor,
path-explicit Graph Compiler and thread-saturated Work-
load Allocator, which employs three EPT primitives (Per-
mutation, Deconstruction, and Combination) to address dy-
namic diversity in QC systems.

The Block Constructor serves as the central orchestrator.
It reformulates versatile data structures immune to dynamic
inputs, and generates fine-grained blocks for efficient map-
ping to GPU SIMT architecture. The Graph Compiler, op-
erating offline, transforms original scientific operators into
computation graphs, applies domain-specific expert knowl-
edge distilled from fine-tuned optimizations, and produces
highly path-clear yet execution-efficient code through an
automated compilation process. Meanwhile, the Workload
Allocator combines compute tiles with varying operational
intensity online. It rapidly evaluates workload schedule pro-
posals, automatically allocating workloads to threads based
on the strategic selection. This results in highly efficient
parallelism for compute-intensive operations and facilitates
fusion with neighboring memory-intensive operations.

We conduct a comprehensive evaluation of Matryoshka
on 13 representative QC systems (Chignolin, DNA, Cram-
bin, etc.), demonstrating a remarkable speedup of up to
5.9x compared to state-of-the-art solutions. Notably, exist-
ing state-of-the-art approaches, while preserving original
accuracy, have not surpassed the simulation scale of more
than 1,000 atoms [32–36, 45–47]. Matryoshka achieves a
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Table 1. Symbol Table in § 2.2

Symbol Meaning
𝜓 Contracted basis function
𝜙 Fundamental basis function
a, b, c, d Angular momentum of basis function
a𝑥 , a𝑦 , a𝑥 Components of the angular momentum a
𝐾 , 𝐿,𝑀 , 𝑁 Degree of contraction
𝐷𝑎𝑘 Contraction coefficient
(ab|cd) Contracted ERI
[ab|cd] Fundamental ERI

breakthrough, maintaining original ab initio accuracy while
simulating 11,259 atoms using a single GPU in one day (19.5
hrs).
Having traversed the content thus far, the rationale be-

hind the initial posed question has been revealed: dynamic
diversity. In response to this challenge, we introduce Ma-
tryoshka.Matryoshka signifies a paradigm shift, ushering
in a new era-System4Science. This innovation lays the foun-
dation for more efficient and scalable scientific computing
on AI infrastructure in the context of quantum chemistry
systems and beyond.

2 Background
2.1 Quantum Chemistry System
The cornerstone of quantum chemistry lies in the elucidation
of atomic systems through the resolution of the Schrödinger
equation [9]. However, the Schrödinger equation proves
tractable solely for a finite set of elementary single-electron
systems. To probe more intricate systems, the preponderance
of computational quantum chemistry methodologies, includ-
ing the widely employed Hartree-Fock (HF) and density-
functional theory (DFT), resort to the self-consistent field
(SCF) approximation. This approximation posits that each
electron within the system traverses an average potential
generated by all other electrons, forming the basis for con-
structing a QC system [38].
The resolution process of a QC system is completed

through iterative steps. Commencing with an initial con-
jecture for the molecular orbitals (MOs), the process entails
constructing the Fock matrix employing the extant MOs,
which encapsulates contributions from kinetic energy, two-
electron repulsion, and an effective potential. Subsequently,
the electron density matrix is derived from the occupied
MOs, and the total energy of the system is computed. Finally,
an evaluation ensues to ascertain the convergence of elec-
tronic density and total energy to a stable solution. Should
convergence remain elusive, the MOs are updated based
on the prevailing electron density, and the entire process is
reiterated until convergence is attained.

2.2 Electron Repulsion Integrals
The computation of two-electron repulsion integrals (ERIs)
within a QC system constitutes a significant time consump-
tion, accounting for approximately 95% of the overall com-
putation time [39].

In quantum mechanics, a contracted basis function𝜓 char-
acterizes an electron’s spatial position, representing a linear
combination of more fundamental basis functions 𝜙 . Each 𝜙
shares identical angular momentum, defined by the vector a.
This vector consists of three integers (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧), with their
cumulative sum determining the angular momentum of the
fundamental basis function. Mathematically, this relation-
ship is expressed as:

𝜓𝑎 =

𝐾∑︁
𝑘

𝐷𝑎𝑘𝜙𝑎𝑘 . (1)

Here, the length of the linear combination, denoted as 𝐾 , is
termed the degree of contraction, and 𝐷𝑎𝑘 represents the
contraction coefficients.
Angular momentum serves as a unique identifier for the

contracted basis function. Assuming the angular momentum
of the four involved contracted basis functions as a, b, c, d,
the integral between two electrons can be denoted as (ab|cd),
which involves four contracted basis functions.

Given that the contracted basis function is a linear combi-
nation of fundamental basis functions, the integral (ab|cd)
can be expanded into the following form of basis function
quadruple [22]:

(ab|cd) =
𝐾∑︁
𝑘

𝐿∑︁
𝑙

𝑀∑︁
𝑚

𝑁∑︁
𝑛

𝐷𝑎𝑘𝐷𝑏𝑙𝐷𝑐𝑚𝐷𝑑𝑛 [a𝑘b𝑙 |c𝑚d𝑛] (2)

To solve [ab|cd], a recurrence relations algorithm is em-
ployed in ERI computations. The key idea is the calculation
of [ab|cd] with larger angular momentum can be derived
from previously computed ones with smaller angular mo-
mentum. The algorithm involves two principles: Horizontal
Recurrence Relation (HRR), which shifts angular momen-
tum by transforming [ab|cd] into [(a + b)0| (c + d)0]; and
Vertical Recurrence Relation (VRR), which reduces angu-
lar momentum at the a or c. Once all angular momenta at
these 4 positions have been reduced to 0, the integral can be
computed analytically on [00|00].

2.3 State-of-the-art
Recent efforts to accelerate research on large-scale QC sys-
tems with ab initio accuracy have pursued two primary ap-
proaches [6, 8, 32–36, 50–53]. One approach involves utiliz-
ing a greater number of CPU cores for distributed computing
acceleration, a solution that consumes vast computational re-
sources and is prohibitively expensive [36].The other focuses
on efficiently porting QC systems to GPU architecture using
High Performance Computing (HPC) techniques. However,
as discussed earlier, the current approaches face significant
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challenges due to dynamic diversity, which considerably lim-
its the potential of GPUs[6, 8, 32–35, 50–53]. To the best of
our knowledge, the industry-recognized state-of-the-art ap-
proaches maintaining original ab initio accuracy have yet to
surpass the scale of simulating more than 1,000 atoms [8, 32–
35]. Consequently, the design at the system level to efficiently
support larger-scale QC systems with fewer computational
resources emerges as a crucial and challenging endeavor.

3 Key Challenges and Insights
3.1 Dynamic Diversity
The existence of dynamic diversity presents a notable chal-
lenge, creating a significant misalignment between scientific
systems and AI infrastructure with SIMT architecture. Over
an extended period, the development and optimization of sci-
entific systems have predominantly revolved around CPU ar-
chitecture with serial computation logic. Consequently, these
systems have not fully harnessed the advantages offered by
cutting-edge AI infrastructure, such as GPUs renowned for
their high performance. In QC systems, this limitation be-
comes particularly pronounced across three key dimensions.

Polymorphic data structures. Unlike the prevalent ten-
sors with uniform data structures found in AI systems, a QC
system is marked by a diverse array of data structures, in-
cluding basis function, basis function pair, and basis function
quadruple, to describe integrals of different input atoms. This
diversity introduces a complex data organization and distinct
execution instructions, leading to two key challenges.
Firstly, the involvement of multiple data structures esca-

lates the memory cost, reaching up to the fourth power of ba-
sis functions. However, given the relatively constrained GPU
memory compared to CPUs, accommodating large-scale QC
systems becomes challenging. Secondly, the existence of dis-
tinct execution instructions for these diverse data structures
often leads to warp divergence. This phenomenon emerges
when threads within a warp deviate from a uniform execu-
tion path, resulting in only one thread being active in a warp.
Consequently, this divergence triggers the serialization of
execution and low throughput on the GPU.

Ambiguous computational paths. In AI systems, model
structures are designed hierarchically, establishing explicit
and well-defined computation paths through interconnected
layers. In contrast, the computation paths in QC systems are
highly diverse and non-unique, resulting in an intricate and
continually-changing computational landscape for the entire
system. This diversity introduces two significant challenges.

Firstly, the complex computation paths bring forth numer-
ous high-precision floating-point operations, rapidly deplet-
ing limited register resources. This, in turn, leads to register
spilling and subsequent performance degradation. Secondly,
in existing work, all candidate computational paths are of-
ten manually coded and individually optimized, resulting in
suboptimal efficiency and poor scalability when applied to
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Figure 2. Illustration of Elastic Parallelism Transformation.
Through the identification of EPT-axes and the application of
EPT primitives, we can achieve fine-grained, dense compute
tile coverage of diverse operators without incurring layout
transformation overhead, while promote GPU utilization.

larger systems. Adding to the complexity, for a specific com-
putational path, its cost is often dynamic. This dynamism
arises because the computational workload is influenced by
the input at each recursive entrance during runtime. This
dynamic characteristic transforms each computation path
into a highly serial and unpredictable process.

Variable operational intensity.GEMMoperation serves
as a fundamental and pivotal component within the domain
of AI systems. Renowned for its high parallelizability, GEMM
is particularly well-suited for hardware acceleration, notably
on GPUs.
In stark contrast, the operations involved in QC systems

deviate markedly from the prevalent homogeneity observed
in AI systems. These operations display substantial variabil-
ity across different types of atom, ranging from compute-
intensive to memory-intensive. In particular, the locations
where these operations are bound can dynamically shift. This
implies that a specific operation may transition from being
compute-intensive to memory-intensive based on varying
inputs, resulting in notable idle periods that only become
discernible at runtime.

3.2 Elastic Parallelism Transformation
As shown in Figure 2, Elastic Parallelism Transformation
stands as the cornerstone insight employed byMatryoshka
to address dynamic diversity within QC systems, contribut-
ing to heightened GPU-efficient parallelism without incur-
ring any data layout conversion costs.

In QC systems, each operator typically involves multiple
reduction dimensions.Matryoshka designates these dimen-
sions as EPT-axes if and only if all computations on this
axis are commutative and associative. The commutative and
associative property ensures mathematically equivalent com-
putation transformations on the original operators, allowing



Matryoshka Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

for the random shuffling of compute tiles along the EPT-axis
to achieve a more elastic parallel pattern in any order.

Along the EPT-axis,Matryoshka introduces the design of
compute tile—a fragment of an operator split in an adjustable
size, which serves to compose a parallelism-friendly unit for
efficient computation. For instance, in a QC system where
contracted basis functions (𝜓𝑎) are linear combinations of
fundamental Gaussians (𝜙𝑎𝑘 ), EPT recognizes that 𝜓𝑎 has
one EPT-axis (𝑘 dimensions), allowing the operator to be
split into at most 𝑘 independent 𝜙𝑎𝑘 compute tiles along this
axis.

Based on the introduced concepts of EPT-axis and compute
tiles, EPT defines three pivotal transformation primitives.
Each primitive works on a specific EPT-axis, orchestrating
precise transformations within operators by manipulating
nested compute tiles:
(1) Permutation: Along an EPT-axis, a portion or the en-

tirety of compute tiles can rearrange their calculation
order.

(2) Deconstruction: If a compute tile retains an EPT-axis,
it can undergo further split into more sub-compute tiles.

(3) Combination: Sub-compute tiles with the same EPT-
axis can also be nested into a larger compute tile.
Through the strategic application of these three primitives,

dynamic diversity within QC systems can be effectively ad-
dressed by elastically aligning the nested compute tiles with
the GPU architecture.

4 Design Overview
Figure 3 shows an overview of Matryoshka, which con-
sists of three core components: divergence-free Block Con-
structor, path-explicit Graph Compiler, and thread-saturated
Workload Allocator.

The Block Constructor serves as the central orchestrator
for the clustering of ERIs and the construction of ERI blocks
with consistent execution instructions, which leverages the
Permutation EPT primitive. It reformulates versatile data
structures resilient to dynamic inputs and generates fine-
grained ERI blocks tailored for efficient mapping onto GPU
SIMT architecture (§ 5).

In an offline manner, the Graph Compiler produces highly
path-clear yet execution-efficient code through an automated
compilation process by utilizing the Deconstruction EPT
primitive. The domain-specific expert knowledge is also dis-
tilled into the Compiler to guide an efficient path-search
algorithm (§ 6).

Employing the Combination EPT primitive, the Workload
Allocator dynamically schedules ERI workloads in response
to their varying operational intensities online. Rapid eval-
uation of workload schedule proposals and automatic as-
signment of workloads to threads are key features, resulting
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Figure 3. Overview of Matryoshka.

in highly efficient parallelism for compute-intensive opera-
tions and facilitating fusion with adjacent memory-intensive
operations (§ 7).

5 Block Constructor
In contrast to the uniform data structures, such as tensors,
that facilitate batch processing in AI systems, QC systems
present a series of distinctive challenges of Dynamic Diver-
sity due to their reliance on polymorphic data structures.
The primary challenge is the accelerated depletion of

computational and memory resources. As detailed in § 2.2,
the ERI computation centers around a specific data struc-
ture—the basis function quadruple (ab|cd). In a QC system
with 𝑁 basis functions, the computation involves 𝑂 (𝑁 4)
ERIs of diverse types. As the size of QC systems scales up,
the total number of ERIs reaches an overwhelming order of
magnitude. Managing such a voluminous set is not only time-
consuming but also places an immense demand on memory
resources.

The second challenge is the issue of warp divergence dur-
ing GPU computations. In QC systems, basis functions shar-
ing the same angular momentum belong to the same class
with consistent execution instructions. However, when a
substantial number of basis functions are sent to the GPU for
computation, threads within one warp may compute ERIs
belonging to different classes. This divergence necessitates
different threads executing different instructions, resulting
in severe warp divergence.
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Moreover, the distribution of these quadruples is inher-
ently stochastic and undergoes dynamic changes with dif-
ferent QC systems. This dynamic nature implies that prepro-
cessing these ERIs at compile time is unfeasible; instead, it
must be conducted at runtime.

InMatryoshka we propose the Block Constructor which
constructs basis function quadruple blocks in a stream-
ing manner to handle the challenges of Dynamic Diversity
caused by polymorphic data structures.

The Block Constructor is conceived based on two key in-
sights, employing the initial EPT primitive—Permutation.
Firstly, Matryoshka discerns that each basis function
quadruple inherently possesses an EPT-axis of basis function
pairs. Along this EPT-axis, (ab|cd) can be derived from the
permutation of two pairs of basis functions, namely (ab|
and |cd). This realization indicates that there is no neces-
sity to pre-construct all basis function quadruples; rather,
constructing all basis function pairs and permuting them
as required during computational proceedings suffices. This
approach significantly reduces the memory cost of (ab|cd)
from 𝑂 (𝑁 4) to 𝑂 (𝑁 2). Secondly, acknowledging the inde-
pendence of each ERI computation within a basis function
quadruple,Matryoshka identifies an additional EPT-axis of
ERIs. Leveraging the Permutation primitive, the ERI compu-
tation can be permuted to group ERIs belonging to the same
class together. This flexible adjustment allows for the batch
processing of ERIs with consistent execution instructions
within a single warp.

As shown in Figure 4, the Block Constructor takes two
stages to complete the construction:

Stage 1: basis function→ basis function pair. In this
stage, the Block Constructor constructs an exhaustive pair-
ing of all basis functions. Subsequently, these pairs are sorted
in ascending order based on their angular momentum. To op-
timize data locality, we further segment these basis function
pairs into multiple tiles. Notably, to guarantee that the result-
ing ERIs from the combination of these tiles fall within the
same ERI class, the tiling process is exclusively performed
within groups of basis function pairs belonging to the same
class.

Stage 2: basis function pair→ basis function quadru-
ple. In this stage, the Block Constructor permutes the basis
function pair tiles to form blocks of basis function quadru-
ples. Should a tile contains𝑀 pairs, the resulting block will
be the size of 𝑀2, enabling the parallel computation of 𝑀2

ERIs. These blocks of ERIs become the fundamental units of
computation which share no data dependencies with each
other. As a result, different ERI blocks can be assigned to
different GPU streams for concurrent execution.
Through the design of the Block Constructor, Ma-

tryoshka successfully reduces the memory cost of (ab|cd)
from 𝑂 (𝑁 4) to 𝑂 (𝑁 2), thereby freeing up a significant
amount of memory space. Simultaneously, this design effec-
tively alleviates the warp divergence problem, significantly
enhancing the parallelism of ERI computations.

6 Graph Compiler
After enhancing the efficiency of batching various ERIs with
the Block Constructor, this subsection will concentrate on
the computation inside a single ERI. As introduced in § 2.2,
recurrence relations algorithm is used to compute a single
ERI (ab|cd) in QC systems. It first reduces the angular mo-
mentum on all four positions to 0 using these relations and
then computes the ERI (00|00) analytically.

The dynamic diversity poses two main challenges in this
procedure. First, the ERI computation involves diverse com-
plex arithmetic operations with high-precision floating-point
numbers, including division, modulo, exponentiation, etc.
These operations necessitate a substantial allocation of reg-
isters per thread, often leading to severe register spilling.
Second, a single ERI can give rise to diverse unclear compu-
tational paths during the recurrence process. This is because
the order of applying the recurrence relations can change, yet
all paths can yield the same result. Moreover, different com-
putational paths have dynamic computational costs, which
makes pinpointing the most efficient computational path a
complex task. These computational costs are not determined
until the recurrence process is actually executed.

InMatryoshka we introduce the Graph Compiler, which
automatically generates an optimized kernel for each ERI.
The Graph Compiler provides four stages to address the
above challenges.
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Stage 1: Computation Deconstruction. First, the Graph
Compiler identifies the EPT axis existed in the dimension
of (ab|cd) according to the principle of EPT. In Equation 2,
(ab|cd) is calculated from the sum of all [a𝑘b𝑙 |c𝑚d𝑛]. Since
different [a𝑘b𝑙 |c𝑚d𝑛] share no data dependencies, they are
naturally commutative and associative. Drawing on the De-
construction EPT primitive, the Graph Compiler then decon-
structs the computation of (ab|cd) into 𝐾 ∗𝐿 ∗𝑀 ∗𝑁 [ab|cd]
(where 𝐾 , 𝐿, 𝑀 , and 𝑁 represent the contraction degrees
of the four contracted basis functions involved in the ERI
computation). As a result, the basic computational workload
for each thread is reduced by a factor of 𝐾 ∗𝐿 ∗𝑀 ∗𝑁 , which
markedly mitigates register spilling.
Stage 2: Graph Abstraction. The Graph Compiler first

abstracts the recurrence process involved in computing each
ERI into a Directed Acyclic Graph (DAG). Within this DAG,
each node represents an intermediate result generated dur-
ing the recursion process and each edge represents that one
intermediate result can be derived from another. The direc-
tion of the edge reflects the direction of derivation. This
abstraction simplifies the complex recurrence process into a
format that is more accessible for computational handling,
serving as the foundational basis for the following stages.

Stage 3: Path Searching. Drawing on the recurrence pro-
cess of ERI computation, we observe that the computational
cost of ERI mainly depends on two factors: (1) The length of
the computational path; (2) The degree to reuse intermediate
results. The first is because the longer the computational
path is, the amount of computation naturally grows. The
second is because thanks to the recurrence relations, many
intermediate results in the previous recurrence steps actually
can be reused in the following recurrence steps, which can
greatly reduce the amount of computation.

Based on these observations, we conclude three guiding
principles for the Graph Compiler to identify an optimized
computational path:
(1) Strive for 0 angular momentum whenever possible.
(2) Prioritize the reuse of intermediate results from previous

computations.
(3) Minimize the generation of new intermediate results.
The first principle is designed to terminate the recurrence
process as soon as possible. The intent of the other two
principles is to diminish computational efforts by preventing
unnecessary recalculations and limiting the introduction of
new calculations.

Based on these three principles, We design a greedy algo-
rithm in Matryoshka to search for an optimized path on
DAG. As Algorithm 1 shown, we express this algorithm as a
function to determine the appropriate recurrence position
at each recurrence step. From the Line 4, the algorithm iter-
ates through each possible recurrence positions and greedily
selects the one with the lowest computational cost. In Line
8, the computational cost is calculated based on the three
guiding principles. Particularly, we use a hyperparameter 𝜆
to balance the first principle with the other two.

Algorithm 1 Greedy Path Searching
1: function FindOptimalPosition(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 , 𝜆)
2: 𝑚𝑖𝑛𝐶 ←∞
3: 𝑜𝑝𝑡𝑃𝑜𝑠 ← NULL
4: for each 𝑝𝑜𝑠 in 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do
5: 𝑟 ← count of reused results at 𝑝𝑜𝑠
6: 𝑛 ← count of new results at 𝑝𝑜𝑠
7: 𝑎 ← value of angular momentum at 𝑝𝑜𝑠
8: 𝑐𝑜𝑠𝑡 ← (𝑛 − 𝑟 ) + 𝜆 ∗ 𝑎
9: if 𝑐𝑜𝑠𝑡 < 𝑚𝑖𝑛𝐶 then
10: 𝑚𝑖𝑛𝐶 ← 𝑐𝑜𝑠𝑡

11: 𝑜𝑝𝑡𝑃𝑜𝑠 ← 𝑝𝑜𝑠

12: return 𝑜𝑝𝑡𝑃𝑜𝑠

Stage 4: Code Generation. The Graph Compiler accepts
the optimized computational path as input, interpreting it
as a sequence of nodes arranged by topological order on a
DAG. It then reverses this sequence and begins to generate
computation codes starting from the base case of recurrence,
which is [00|00]. After determining the value of ERI [00|00]
analytically, the Graph Compiler proceeds to generate code
for computing the nodes sequentially, working its way up to
the desired target ERI [ab|cd].
It is worth noting that the Graph Compiler handles the

entire task of kernel generation at compile time, resulting
in no overhead during runtime. In addition to generating
optimized kernels, the automation of the Graph Compiler
equips Matryoshka with outstanding scalability for QC
systems of any size. This eliminates the need for manual
enumeration and case-by-case optimization across different
ERI classes.
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Figure 6.OP/B trends in Chignolin and Crambin. An upward
trend is observed between OP/B and angular momentum.

7 Workload Allocator
While the Graph Compiler offers optimized kernels for
[ab|cd] computations, it is noteworthy that different kernels
for [ab|cd] exhibit varying operational intensities, spanning
from compute-intensive to memory-intensive. In this con-
text, we conduct an analysis of the compute-to-memory ra-
tio (OP/B) for various [ab|cd] operations within Chignolin,
a widely-used QC system composed of an artificial mini-
protein. As depicted in Figure 6, an increase in angular mo-
mentum corresponds to a rise in the OP/B of [ab|cd]. This
trend arises from the fact that in each ERI computation, the
number of memory operations tends to remain stable, while
the number of computational operations grows with increas-
ing angular momentum. The multitude of ERI computations
with diverse angular momenta leads to a frequent transi-
tion in operational intensity between memory-intensive and
compute-intensive scenarios.

More complicated, however, is the dynamic nature of op-
erational intensity for each kernel, where the bound position
can vary with inputs. This dynamism implies a limited poten-
tial to pre-determine the bound bottleneck at compile time,
often resulting in the generation of idle bubbles in the com-
puting pipeline and leading to suboptimal GPU utilization
at runtime.

As shown in Figure 7, Matryoshka introduces the Work-
load Allocator—a key component designed to automatically
allocate workloads to each thread efficiently, exploiting both
the computational power andmemory bandwidth of the GPU.
Guided by the Combination EPT primitive, the Workload Al-
locator initially expands the [ab|cd] into larger dependency-
free compute tiles with varying degrees of combination first.
Then two allocation principles are presented to achieve an
efficient overlapping of computation and memory access by
managing these compute tiles.
(1) For memory-intensive operations. The Workload Al-

locator tends to allocate a larger workload per thread.
Since computation is constrained by memory access, as-
signing more computational workloads can help mitigate
idle bubbles caused by memory access latency.

(2) For compute-intensive operations.Adding more com-
putational workloadmay not be advantageous, as it could
already exceed each thread’s computational capacity. In

...

ERI Class 0 ...

...

Workload AllocatorERI Class 1

ERI Class 2

Time 0

Time 1

Time 2

Schedule

RU
N
TI
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OP/B: > >

Figure 7. Workload Allocator matches threads to their ideal
workload with varying operational intensity. At time 0, each
thread is allocated a basic computational unit. Over time, the
Workload Allocator progressively assigns additional tasks to
the threads until they are saturated (orange-colored).

such cases, distributing the workload across more threads
can help reduce computational latency. Simultaneously,
the additional memory access associated with this ap-
proach can be mitigated by the underutilized memory
bandwidth.
Based on the two allocation principles, we design an auto-

tuning framework for efficiently scheduling workloads with
varying operational intensities within the Workload Alloca-
tor. As shown in Algorithm 2, the workload of each thread
is allocated as a [ab|cd] initially in Line 1-2. From the Line 3,
the Workload Allocator systematically augments the work-
load for each ERI class by merging more basic computational
units into a bigger one. The criterion for continuing this
expansion is contingent upon observing improvements in
the wall time of ERI calculations (Line 7-13). At last, the
Workload Allocator converges, and each thread aligns with
their suitable workload for diverse [ab|cd].

Algorithm 2 Auto-tuning Framework
1: for each 𝑐𝑙𝑠 in 𝐸𝑅𝐼 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
2: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 [𝑐𝑙𝑠] ← [ab|cd]
3: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← true
4: while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 do
5: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← false
6: for each 𝑐𝑙𝑠 in 𝐸𝑅𝐼 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
7: 𝑡1← Time(𝑐𝑙𝑠)
8: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 [𝑐𝑙𝑠] ← Combine(𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 [𝑐𝑙𝑠])
9: 𝑡2← Time(𝑐𝑙𝑠)
10: if 𝑡2 < 𝑡1 then
11: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← true
12: else
13: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 [𝑐𝑙𝑠] ← Revert(𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 [𝑐𝑙𝑠])

Notably, the Workload Allocator seamlessly integrates
with ongoing computations at runtime, introducing minimal
additional overhead. Furthermore, the Workload Allocator
efficiently executes reduction across diverse threads by en-
abling each thread to employ atomic operations directly. This
strategic approach is based on the observation that update
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positions from different threads exhibit relative sparsity, pre-
senting an opportunity to minimize write conflicts among
threads.

8 Evaluation
In this section, we conduct a comprehensive set of exper-
iments to demonstrate the effectiveness of Matryoshka
from various perspectives. Specifically, we begin by evaluat-
ing the correctness of Matryoshka with Elastic Parallelism
Transformation against state-of-the-art approaches on five
classical QC systems in § 8.2. Subsequently, in § 8.3 we assess
eachMatryoshka component individually: § 8.3.1 shows the
performance breakdown of Matryoshka, § 8.3.2 examines
the Block Constructor’s role in handling warp divergence,
§ 8.3.3 validates the Graph Compiler’s efficacy in mitigating
register spilling and optimizing computational paths, and
§ 8.3.4 emphasizes the impact of the Workload Allocator in
finely scheduling workloads to alleviate varying operational
intensity. The scalability of Matryoshka is explored in § 8.4,
and finally, in § 8.5, we evaluate the end-to-end simulation
performance of Matryoshka on both A100 and A6000 GPUs
across six larger representative QC systems. In summary, our
results show that:
• The mathematical rigor of Matryoshka is firmly estab-
lished through Elastic Parallelism Transformation. From
a physicist’s stringent viewpoint, the accuracy of Ma-
tryoshka can be deemed practically error-free (within
10−3 [24, 49]), with errors no more than 10−5 on five rep-
resentative QC systems in comparison to state-of-the-art
approaches.
• With Elastic Parallelism Transformation, Matryoshka
addresses dynamic diversity effectively. Specifically, the
Block Constructor shows a 4.7× improvement, the Graph
Compiler a 2.3× improvement, and theWorkload Allocator
a 4.5× improvement across six QC systems on average.
• Matryoshka outperforms the previous state-of-art works
and achieves up to 13.86×, 9.56×, and 4.82× speedup over
Libint, PySCF, and QUICK respectively. Besides, it also
achieves a breakthrough, maintaining original ab initio
accuracy while simulating 11,259 atoms for 99 iterations
using a single GPU in one day (19.5 hrs).

8.1 Experimental Setup
Platforms.We conduct our evaluation on two platforms. Plat-
form A comprises an AMD EPYC 7V13 processor with 24
physical cores, and an Nvidia A100 80GB PCIe GPU. The
A100 GPU could provide 1,935 GB/s memory bandwidth and
9.7 TFLOPs for FP64 operations. Platform B consists of an
AMD EPYC 7742 processor with 64 physical cores, and four
Nvidia A6000 48GB PCIe GPUs. Each A6000 GPU offers 768
GB/s memory bandwidth and 1.25 TFLOPs for FP64 opera-
tions. Both platforms employ GCC 9.4.0 and CUDA 12.2.

Table 2. Configuration forMatryoshka benchmarks.
Correctness Performance Scalability

Name Atoms Name Atoms Name Atoms
Water 3 Chinoglin 166 Water Cluster 300-11259
Benzene 12 DNA 566 GluAla Cluster 28-6658
Water-10 30 Crambin 642
Methanol-7 42 Collagen 692
C60 60 tRNA 1656

Pepsin 2797

Benchmarks. We employ a wide array of representative
QC systems to serve as benchmarks, as listed in Table 2. For
correctness validation, we prioritize a diverse mix of sys-
tems, encompassing both organic and inorganic molecules.
For performance evaluation, we pay particular attention to
the computation complexity of these benchmarks. For scala-
bility assessment, the size of the benchmarks is our primary
concern. In all evaluations, we utilize the STO-3G basis set,
which has relatively lower angular momentum for the sake
of simplicity in presentation. It’s important to note, however,
that Matryoshka is compatible with any basis set.

State-of-the-arts. Due to the majority of work being closed-
source or exhibiting significant differences in algorithm im-
plementation, it is challenging to reproduce the results of
related work on a one-to-one basis. Despite these obsta-
cles, we have endeavored to collect and reproduce several
industry-recognized state-of-the-art works, covering both
CPU and GPU for the purpose of quantitative comparison.
We employ Libint [54] and PySCF [45–47] as representa-

tive examples of CPU-centric designs, which continues to
dominate the majority of current work. Libint is one of the
most efficient libraries for evaluating molecular integrals.
PySCF is a widely utilized quantum chemistry Python pack-
age, featuring critical components that are highly optimized
in C language. To showcase the emerging trend of GPU-
centric work, we opt for QUICK, which stands as the current
state-of-the-art for GPU implementations, supported by a
series of studies [32–35].

8.2 Correctness Validation
We calculate the total energy for five classic QC systems us-
ingMatryoshka as well as other state-of-the-art approaches.
In line with the common practice, we set the convergence
threshold of electronic density as 10−6.
Table 3 shows that the precision of Matryoshka aligns

with other state-of-the-art approaches to within 10−5, meet-
ing the accuracy demands for most QC problems. For C60, a
noticeable deviation in the result from QUICK is observed.
However, the other approaches including Matryoshka
maintain consistency.
We also visualize the Lowest Unoccupied Molecular Or-

bital (LUMO) of these QC systems using the results from
Matryoshka, as shown in Figure 8. These visualizations
are in agreement with the experimental data [7, 11], which
reinforces the accuracy of Matryoshka.
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Table 3. Comparison of precision with state-of-the-arts.
Molecules Libint PySCF QUICK Matryoshka
Water -74.9646977 -74.9646977 -74.9646977 -74.9646977
Benzene -227.8909828 -227.8909828 -227.8909827 -227.8909828
Water-10 -749.6898790 -749.6898790 -749.6898792 -749.6898793
Methanol-7 -794.7735844 -794.7735844 -794.7735843 -794.7735845
C60 -2134.2652024 -2134.2652002 -2134.2155554 -2134.2652033
* The underline highlights the identical digits among the state-of-the-art results.

(a) Water (b) Benzene (c) Water-10 (d) Methanol-7 (e) C60

Figure 8. LUMO visualization for five classical QC systems.
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Figure 9. Performance breakdown of Matryoshka.

8.3 Breakdown Evaluation
8.3.1 Performance Breakdown. Wefirst investigate how
three core components of Matryoshka improve the perfor-
mance by integrating them progressively. Figure 9 shows
the performance breakdown of Matryoshka on six repre-
sentative QC systems with great computational complexity.
By clustering ERIs with consistent execution instructions,
the Block Constructor mapping the ERI computation onto
GPU SIMT architecture efficiently, thus achieving a 4.7×
improvement on average. Next, the Graph Compiler decon-
structs each ERI into multiple ERI compute tiles and gen-
erates the path-clear yet execution-efficient code for them,
which brings a 2.3× improvement on average. Finally, the
Workload Allocator is integrated which schedules ERI com-
pute tiles to each thread dynamically, which provides a signif-
icant 4.5× improvement on average. Here Matryoshka has
reached the 33.1×, 44.7×, 26.1×, 55.1×, 84.4×, 51.8× speedups
accumulatively on six representative QC systems.

8.3.2 Block Constructor. The Block Constructor takes a
two-fold approach to complete the construction, systemat-
ically organizing the data structures from individual basis
functions to pairs, and ultimately to quadruples. This ap-
proach significantly reduces the memory cost of ERI compu-
tation from the 𝑂 (𝑁 4) complexity of basis function quadru-
ples to the more manageable 𝑂 (𝑁 2) of pairs. We count the
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Figure 10. Comparative analysis of Average Active Threads
per Warp in two representative QC systems. Matryoshka’s
values are classified by ERI classes, while the baseline values
are depicted as horizontal lines, indicating the absence of
any clustering process.

Table 4. The number of basis function pairs and quadruples
in six representative QC systems.
QC System Chignolin DNA Crambin Collagen tRNA Peptin
Pair 24.0K 123.2K 156.8K 143.3K 381.6K 668.9K
Quadruple 577.1M 15.1G 24.5G 20.5G 145.6G 371.0G

number of basis function pairs and basis function quadruples
in real-world QC systems respectively, as listed in Table 4.
It shows that this nested construction slashes the memory
demands by a factor of 103, transforming what was once an
infeasible computational task into a feasible one.
We choose the metric average active threads per warp to

study the effectiveness of the Block Constructor in reducing
warp divergence, as shown in Figure 10. A higher number
of average active threads per warp indicates less divergence
within a single warp. Prior the integration of the Block Con-
structor, the average active threads per warp were as low as
3.21 and 5.16 for the Chignolin and Crambin respectively,
indicating significant warp divergence issues. However, the
Block Construct improves this situation markedly by lever-
aging the Permutation primitive of EPT, achieving increases
of up to 7.37× and 4.70× across different ERI classes in the
two QC systems.

8.3.3 Graph Compiler. The Graph Compiler is designed
to address two key challenge inherent in a single ERI com-
putation. The first challenge is the severe register spilling
due to the complex arithmetic operations involved in ERI
computations. To assess the effectiveness of the Graph Com-
piler in tackling this issue, we measure two specific metrics
within the computations of Chignolin and Crambin.

The first metric we examine is the number of local mem-
ory requests, as shown in Figure 11a. This metric is a direct
indicator of the severity of register spilling; when the reg-
ister file is unable to hold all the data needed for compu-
tations, the excess data spills over into the local memory.
The result shows that the Graph Compiler, by employing the
Deconstruction primitive to partition the complete ERI into
several compute tiles, efficiently reduces the local memory
requests by up to 2.48× and 2.40× on two QC systems. This
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(a) Local memory request.
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(b) GPU occupancy.
Figure 11. Comparative analysis of local memory request
and GPU occupancy on two representative QC systems.

substantial decrease in local memory requests implies that
the Graph Compiler significantly alleviates the problem of
register spilling, thereby enhancing the efficiency of the ERI
computation process on these QC systems.
The second metric we select is the GPU Occupancy, an

important metrics that reflects the GPU’s ability to hide laten-
cies. Register spilling can negatively impact GPU Occupancy
as it increases the number of registers required per thread.
Figure 11b shows that the Graph Compiler improves the
occupancy of kernels that computes all ERI classes, from
1.23× to 2.09×, and from 1.13× to 1.54× on two QC systems
respectively.
The second challenge is the ambiguous computational

paths whose computational cost is dynamic. The Graph
Compiler uses a greedy path searching algorithm to find
an optimized path. Typically, it takes less than 10 seconds
for finding the target computational path and generating the
corresponding computational kernel. Take the Crambin as
an example, the Graph Compiler uses just 2.57 seconds to
complete the above tasks within a search space comprising
approximately 𝑂 (105) potential computational paths. No-
tably, this kernel performs 1.42× faster than one derived
from a randomly-generated computational path.

8.3.4 Workload Allocator Evaluation. Employing the
Combination EPT primitive, the Workload Allocator sched-
ules ERI compute tiles at runtime in response to their varying
operational intensity. Specially, we measure two metrics to
evaluate the effectiveness of the Workload Allocator in Chig-
nolin and Crambin.
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(a) Arithmetic Intensity.
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(b) Compute Throughput.
Figure 12. Comparative analysis of compute throughput
and arithmetic intensity on two representative QC systems.

The first metrics is the arithmetic intensity, which mea-
sures the ratio of the FLOP to byte. A higher value indicates
greater computational intensity for the kernel. As shown in
Figure 12a, the Workload Allocator’s tuning process adjusts
the arithmetic intensity of different ERI classes to address
their specific computational bottlenecks.

The other metrics is the compute throughput, which rep-
resents the system’s computational performance, as shown
in Figure 12b. The result shows that the Workload Allocator
is effective; after tuning, compute throughput across all ERI
classes has improved significantly, with increases of up to
2.06× and 1.78×, respectively. Additionally, since the auto-
tuning algorithm is integrated with the computation process,
there is no additional overhead measured.

8.4 Scalability Evaluation
Single GPU.We measure the execution time of Matryoshka
as it scales with two QC system sizes on single A100 GPU.
Figure 13 shows that when the axes are scaled logarithmi-
cally, the execution time curve aligns closely with the ERI
number curve. This result indicates that both execution time
and ERI number grow exponentially with the atom count,
while the performance of Matryoshka remains stable de-
spite problem size variations, ensuring consistent efficiency
and adaptability across diverse scenarios. It is noteworthy
that the largest scale of Water QC system accommodates up
to 11,259 atoms andMatryoshka finishes the simulation for
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Figure 13. Scalability of Matryoshka on larger QC systems
using both a single GPU and multiple GPUs.

99 iterations in 19.5 hours, which establishes a novel bench-
mark especially when current studies are predominantly
confined to systems with fewer than 1,000 atoms.
Multiple GPUs. We further evaluate the performance of

Matryoshka in multi-GPU scenarios with four A6000 GPUs.
Figure 13 presents the results of the weak scaling tests on
Water and Gluala clusters with increasing molecular scales.
With different problem sizes, the speedup of Matryoshka
grows approximately proportional to the number of A6000
cards, which demonstrates that the performance of Ma-
tryoshka remains consistent regardless of problem size
variations, even in multi-GPU scenarios.

8.5 End-to-End Evaluation
Finally, we compare the end-to-end execution time between
Matryoshka and other state-of-the-art approaches. To elim-
inate the impact of different iteration counts, we limit the
maximum number of iteration at 99. Figure 14 shows that
by capitalizing on EPT, Matryoshka effectively tackles the
challenge of dynamic diversity within QC systems and con-
sistently surpasses the previous state-of-the-art approaches
across all six representative QC systems on both A100 and
A6000 GPUs. The performance of PySCF is slow and insuffi-
cient for producing results for large-sized molecules, such as
tRNA and Peptin. Libint exhibits superior performance com-
pared to PySCF, owing to more robust multi-thread support.
Matryoshka achieves up to 13.35× and 13.86× speedup
over Libint on A100 and A6000 GPUs, respectively. Leverag-
ing GPU, QUICK surpasses CPU-based approaches in most
benchmarks. However, it performs slower than Libint for the
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Figure 14. Performance comparison of end-to-end execution
time. Speedup is calculated relative to the execution time of
Libint.

Crambin molecule, emphasizing multi-core CPUs’ computa-
tional capability. QUICK fails to complete Pepsin calculations
due to memory limitations.Matryoshka excels over QUICK
across benchmarks, achieving up to 2.11× and 4.82× speedup
on A100 and A6000 GPUs.

9 Related Work
CPU-centric. Traditional CPU-based approaches [4, 14, 25,
40] primarily focus on minimizing computation and can be
divided into two strategies: reducing the number of itera-
tions [4, 14] and limiting the number of integrals recalculated
per iteration [14, 40]. Although these improvements signifi-
cantly reduce computation, they do not consider computer
hardware, resulting in suboptimal computational efficiency.
Recently, several studies [1–3, 13, 19, 30, 36, 43, 44, 55] have
concentrated on developing efficient implementations using
distributed CPU nodes. Someworks aim to design distributed
parallel algorithms [1, 3, 19, 36, 55], while others address the
prevalent load imbalance issues in the field [2, 13, 30, 43, 44].
However, the limitations in computational capability of CPUs
hinder their further advancement.
GPU-centric. Yasudo [58] was among the first to im-

plement GPU technology for the evaluation of ERIs, result-
ing in substantial speed improvements when compared to
CPU-based computations. Following this, Ufimtsev and Mar-
tinez [50–53] conducted a series of studies that implemented
a full Fock build on GPUs, wherein each thread is mapped to
a different fundamental integral class. However, their works
mainly depended on single-precision arithmetic, leading to
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considerable computational errors. Asadchev et al. [6] intro-
duced a Rys quadrature ERI method on GPUs that utilized
double precision, but overlooked the data transfer costs be-
tween CPUs andGPUs.Miao et al. [32–35] and Barca et al. [8]
employed the HGP method to reduce the computational ex-
penses associated with the evaluation of ERIs, ultimately
achieving remarkable speedups. Despite these advancements,
these approaches did not account for the dynamic diversity
inherent in QC systems, resulting in under-utilization.

10 Conclusion
This paper presents Matryoshka, a novel elastically-parallel
technique for the efficient and accurate execution of quantum
chemistry system with dynamic diversity on GPU. Leverag-
ing Elastic Parallelism Transformation, Matryoshka realigns
an efficient parallelism with GPU architecture with three
key components: The Block Constructor formulates resilient
data structures and constructs fine-grained, GPU-efficient
compute blocks; the Graph Compiler generates code with
clear computational path through an automated compilation
process; the Workload Allocator achieves highly efficient
parallelism for compute-intensive operations and facilitating
automatic fusion with memory-intensive operations online.
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