
Reducing Redundancy in Data Organization and Arithmetic
Calculation for Stencil Computations
Kun Li

State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Chinese Academy of Sciences

School of Computer Science and Technology, University of

Chinese Academy of Sciences

Beijing, China

likungw@gmail.com

Liang Yuan
∗

State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Chinese Academy of Sciences

Beijing, China

yuanliang@ict.ac.cn

Yunquan Zhang

State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Chinese Academy of Sciences

Beijing, China

zyq@ict.ac.cn

Yue Yue

State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Chinese Academy of Sciences

School of Computer Science and Technology, University of

Chinese Academy of Sciences

Beijing, China

yyue1998@gmail.com

ABSTRACT
Stencil computation is one of the most important kernels in various

scientific and engineering applications. A variety of work has fo-

cused on vectorization techniques, aiming at exploiting the in-core

data parallelism. However, they either incur spatial data conflicts

or hurt the data locality when integrated with tiling. In this paper,

a novel spatial computation folding is devised to reduce the data

reorganization overhead for vectorization and preserve the data

locality for tiling in the data space simultaneously. We then propose

an approach of temporal computation folding enhanced with shifts

reusing, tessellate tiling, and semi-automatic code generation. It

aims to further reduce the redundancy of arithmetic calculations

and exploit the register reuse along the time dimension. Exper-

imental results on the AVX2 and AVX-512 CPUs show that our

approach obtains significant performance improvements compared

with state-of-the-art techniques.

CCS CONCEPTS
•Computingmethodologies→Vector / streaming algorithms;
• Theory of computation → Vector / streaming algorithms.

KEYWORDS
Stencil, Vectorization, Register reuse, Data locality

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476154

ACM Reference Format:
Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue. 2021. Reducing Redun-

dancy in Data Organization and Arithmetic Calculation for Stencil Computa-

tions. In The International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO,
USA. ACM, St. Louis, MO, 13 pages. https://doi.org/10.1145/3458817.3476154

1 INTRODUCTION
Stencil is one of the most important kernels widely used across a set

of scientific and engineering applications. It is extensively involved

in various domains from physical simulations to machine learning

[23, 33]. Stencil is also one of the seven computational motifs pre-

sented in the Berkeley View [3, 4, 48] and arises as a principal class

of floating-point kernels in high-performance computing.

A stencil contains a pre-defined pattern that updates each point

in 𝑑-dimensional spatial grids iteratively along the time dimension.

The value of one point at time 𝑡 is a weighted sum of itself and

neighboring points at the previous time [37]. The naive implemen-

tation for a 𝑑-dimensional stencil contains 𝑑 + 1 loops where the
time dimension is traversed in the outmost loop and all grid points

are updated in inner loops. Since stencil is characterized by this

regular computational structure, it is inherently a bandwidth-bound

kernel with a low arithmetic intensity and poor data reuse [21, 48].

Performance optimization of stencils has been exhaustively in-

vestigated in the literature. Traditional approaches have mainly

focused on either vectorization or tiling schemes, aiming at im-

proving the data parallelism and locality respectively. These two

approaches are often regarded as two orthogonal methods working

at different levels. Vectorization seeks to utilize the SIMD facilities

in CPU to perform multiple data processing in parallel, while tiling

tries to increase the reuse of a small set of data fit in cache.

Prior work on vectorization of stencil computations primarily

falls into two categories. The first one is based on the associativ-

ity of the weighted sums of neighboring points. Specifically, the

https://doi.org/10.1145/3458817.3476154
https://doi.org/10.1145/3458817.3476154

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue

execution order of one stencil computation can be rearranged to ex-

ploit common subexpressions [6, 10, 30, 31, 50]. Consequently, the

number of load/store operations can be reduced and the bandwidth

usage is alleviated in an optimized execution order. The second

one attempts to deal with the spatial data conflict [15, 16], which is

the main performance-limiting factor. The spatial data conflict is a

problem caused by vectorization, where the neighbors for a grid

point appear in the same vector register but at different positions.

One milestone approach is the DLT method (Dimension-Lifting

Transpose) [15], and it performs a global matrix transformation to

address the spatial data conflict.

To address the problem of spatial conflicts, two common imple-

mentations are often adopted. The first one loads all the needed

elements frommemory in a vector form straightforward. Due to the

low operational intensity, the stencil computation is often regarded

as a memory-starving application. Compared with the scalar code,

this multiple load vectorization method further increases the data

transfer volume. Moreover, in each iteration of this code, it has at

least two unaligned memory references where the first data address

is not at a 32-byte boundary. Since CPU implementations favor

aligned data loads and stores, these unaligned memory references

will degrade the performance considerably.

The second solution is similar to the scalar code in terms of

the CPU-memory data transfer. It loads each input element to

vector register only once and assembles the required vectors via

data permutation instructions. Compared with the multiple load

method, this data permutation method reduces the memory band-

width usage and takes advantage of the rich set of data-reordering

instructions supported by most SIMD architectures. However, the

execution unit for data permutations inside the CPU may become

the bottleneck.

One milestone approach to address the spatial data conflicts is

the DLT method [15]. In DLT the original one-dimensional array

of length 𝑁 is viewed as a matrix of size 𝑣𝑙*(𝑁 /𝑣𝑙), where 𝑣𝑙=4 for
double-precision floats in a 256-bit vector. It then performs a global

matrix transformation and assembles input vectors for calculating

output vectors at the boundary. The DLT layout overcomes the

input spatial data conflicts.

The following are some drawbacks of DLT. First, if we disregard

the boundary processing, DLT can be considered as 𝑣𝑙 independent

stencils. As a result, when combined with blocking frameworks,

data reuse is reduced by 𝑣𝑙 times. The reason is that the 𝑣𝑙 inde-

pendent stencils do not share data. Second, explicit transformation

operations add overhead to DLT, which is particularly noticeable

in stencils with higher orders or dimensions. The number of time

loops in 1D stencils in scientific applications is frequently large

enough to amortize the transpose overhead. However, the time size

for 3D and high-dimensional stencils in other applications such

as image processing is small, thus the overhead for global matrix

transformation is unignorable. Finally, it’s difficult to implement

the DLT transpose in-place, so it’s common to store the transposed

data in a separate array. This increases the code’s space complexity.

As one of the crucial techniques to exploit the parallelization

and data locality for stencils, tiling, also known as blocking, has

been widely studied for decades. Since the size of the working

sets is generally larger than the cache capacity on a processor

[24], the spatial tiling algorithms are proposed to explore the data

reuse by changing the traversal pattern of grid points in one time

step. However, such tiling techniques are restricted to the size

of the neighbor pattern [21, 47]. Temporal tiling techniques have

been developed to allow more in-cache data reuse across the time

dimension [48].

The two aforementioned approaches of stencil computation op-

timizations often have no influence on the implementation of each

other. However, the data organization overhead for vectorization

may degrade the data locality. Moreover, most of the prior work

only focuses on temporal tiling on the cache level. This only re-

duces the data transfer volume between cache and memory, and the

high bandwidth demands of CPU-cache communication are still

unaddressed or even worse with vectorization. Thus, the redundant

calculation is performed on the same grid point iteratively due to

massive CPU-cache transfers along the time dimension.

In this paper, we first design a novel computation folding strat-

egy to overcome the input spatial data conflicts of vectorization

and preserve the data locality for tiling simultaneously. The new

vectorization scheme is formed with an improved fast in-CPU ma-

trix transpose, which achieves the lower bounds both on the total

number of data organization operations and thewhole latency. Com-

pared with conventional methods, the corresponding computation

scheme for the new strategy requires no additional data organi-

zation operations, and the whole vectorized process is executed

efficiently under considerable loads.

Based on the proposed strategy, a temporal computation folding

approach is devised to reduce the redundancy of arithmetic calcula-

tions. We perform a deep analysis of the expansion for multiple time

steps, fold the redundant operations on the same point, and reas-

sign a new weight for it to achieve a multi-step update directly. An

improved in-CPU flops/byte ratio is obtained by reusing registers,

and the calculation of intermediate time steps is skipped over to

alleviate the increased register pressure. The temporal computation

folding approach could also be generalized for arbitrary stencil pat-

terns. Furthermore, we utilize a shifts reusing technique to decrease

the redundant computation within the innermost loops, integrate

the proposed approach with a tiling framework to preserve the data

locality, and design a semi-automatic code generator to simplify

the parallel programming.

The proposed scheme is evaluated with AVX2 and AVX-512

instructions for 1D, 2D, and 3D stencils. The results show that our

approach is obviously competitive with the classic vectorization

methods (Auto Vectorization [38] and Data Reorganization [48]),

state-of-the-art compilers (Pluto [5, 7] and SDSL [15, 16, 48]) and

existing highly-optimized work (YASK[46] and Tessellation [47]).

This paper makes the following contributions:

• We propose an efficient computation folding strategy and

corresponding vectorization scheme for stencil computation.

The strategy utilizes a fast in-register transpose to eliminate

spatial conflicts.

• Based upon the new proposed strategy, we design a temporal

computation folding approach enhanced with shifts reusing,

tessellate tiling and semi-automatic code generation. It aims

to reduce the redundancy of arithmetic calculation in time

iteration space.

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

• We generalize our approach on various kernels, and demon-

strate that it could achieve superior performance compared

to different highly-optimized work[5, 15, 16, 38, 46, 48] on

multi-core processors.

The paper is organized as follows. First, Table 1 presents a brief

sketch of the related terms used in this paper. Next, Section 2 in-

troduces the relevant background and presents the existing work.

Section 3 elaborates on the motivation of reducing spatial conflicts

and formally describes the proposed computation folding strategy.

Then the computation folding strategy is extended by exploiting

register reuse to eliminate the arithmetical redundancy in time

iteration space in Section 4. In Section 5, techniques for efficient

implementation are discussed. Section 6 evaluate the performance

exhaustively and Section 7 concludes the paper.

2 RELATEDWORK
Research on optimizing stencil computation has been intensively

studied [9, 20, 26, 36, 39], and it can be broadly classified as opti-

mization methods to boost the computation performance, enhance

the data reuse, and improve the data locality.

Vectorization by using SIMD instructions is an effective way to

improve computation performance for stencils. Henretty proposes

a new method DLT [15, 16] to overcome input spatial data conflicts

at the expense of a dimension-lifting transpose, which makes it

infeasible to perfectly utilize the tiling technique as a result of

its spatially separated data elements [21]. Essentially DLT can be

viewed as the combination of strip-mining (1-dimensional tiling)

and out-loop vectorization [16]. In DLT the loop is transformed

to a depth-2 loop nest where the size of the outer loop equals the

vector length 𝑣𝑙 and the inner loop processes each subsequence of

length 𝑁 /𝑣𝑙 . Note that the strip-mining was also introduced for

vectorization [2]. However, the conventional usage is to make the

size of the innermost loop be the vector length and substitute it by

a vector code.

Data reuse has also been extensively recognized and exploited.

Prior work [30, 31, 35, 50] on optimizing the order of execution

instructions could decrease loads/stores operations to relieve the

register pressure, while only the individual element in each vector

could be reused. Basu designs a vector code generation scheme

to reuse several vectors in the computation process, and it is con-

strained to constant-coefficient and isotropic stencils [6]. YASK

Table 1: Terms

𝑁 problem size of one-dimensional stencils

𝑣𝑙 maximum number of 𝑑𝑜𝑢𝑏𝑙𝑒 elements a register can hold

VS vector set, the building block composed of 𝑣𝑙 vectors

𝑚 temporal unrolling factor

𝑡 stamp at this time step

𝐸 scalar arithmetic expression for a stencil

𝐶 (𝐸) the number of arithmetical instructions used in 𝐸

𝑃 fraction of the cardinalities on 𝐶 (𝐸) and EΛ
𝑤 original pre-defined stencil weights

𝜆 reassigned stencil weights

𝑣 vector register variable

[46] could improve data reuse by using common expression elimi-

nation and unrolling based on their vector-folding methods with

fine-grained blocks [45], which is optimized only for high-order

3-dimensional stencils [50]. Zhao [50] designs a greedy algorithm

to decide the part of the computation with high reuse, and groups

reordered operators by using the same part as inputs to be com-

puted with scatter operations. For other parts not identified by

the algorithm, they still utilize the original computation by gather

operations. Rawat [30] utilizes a DAG of trees with shared leaves

to describe the stencil computation, and devises a scheduling al-

gorithm to minimize register usage by reordering instructions on

GPUs. Stock [35] proposes a framework to analyze the execution

schedule of inputs in stencil computation. Reordering operations

by using the associativity and commutativity are performed to

relieve the increased register pressure. Nevertheless, the floating-

point computations are not reduced by these approaches. Common

subexpression elimination (CSE) [1] is presented to reduce the re-

dundant computation in successive iterations of the same loop by

reusing partial sums of a subexpression. This method relies heavily

on loop unrolling to find specific expressions. Deitz extends the

CSE method as Array Subexpression Elimination (ASE) [11] by

creating an abstraction called a neighborhood tablet. Since the ASE

reuses partial sums by subtablets via temporary variables, scalar

dependences are newly introduced and hinder the instruction-level

parallelization by compilers.

Tiling [17, 22, 25, 41, 42] is one of the most powerful transforma-

tion techniques to explore the data locality of multiple loop nests.

Notably work for stencil computations includes hyper-rectangle

tiling [12, 27, 29, 32], time skewed tiling [18, 34, 43], diamond tiling

[5, 7], cache oblivious Tiling [13, 36, 37], split-tiling [16] and tes-

sellating [47]. Wonnacott and Strout present a comparison on the

scalability of many existing tiling schemes [44]. Most of these tech-

niques are compiler transformation techniques and this paper inte-

grated the new proposed layout with the tessellation scheme for

simplifying the implementation. For stencil computations, a variety

of auto-tuning frameworks [8, 14, 19, 49] have been presented by

using varied hyper-rectangular tiles to exploit data reuse alone.

However, redundant computations are involved in these work to

resolve the introduced inter-tile dependencies that hinder the con-

current execution of shaped tiles on different cores.

3 SPATIAL COMPUTATION FOLDING
In this section, we first discuss the drawbacks of existing meth-

ods. Then we present a computation folding strategy and its corre-

sponding vectorized process to eliminate the spatial conflicts when

loading data.

3.1 Motivation
Normal vectorization leads to two drawbacks for stencil computa-

tions. First, there will be redundant references in one single vector

computation. As shown in Figure 1 (a), to compute the next time step

of (𝐻, 𝐼, 𝐽 , 𝐾), it requires (𝐴, 𝐵,𝐶, 𝐷), (𝐵,𝐶, 𝐷, 𝐸) and (𝐶, 𝐷, 𝐸, 𝐹)
first, which have common elements appearing at different positions.

Thus, it will incur at least two unaligned vector loads.

Second, normal vectorization prevents the data reuse between

continuous computations. In the scalar execution, two continuous

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue

 Time Step t Time Step t+1

A B C D E F

H I J K

N O P Q

G L

M R

(b) Star Stencil (2D5P)(a) Box Stencil (2D9P)

A B C D E F G H

J K L M N O P Q

S T U V W X Y Z

I R

Figure 1: Spatial data conflicts in vectorization of 2D stencils.

computations share 6 points and each new computation only re-

quire 3 loads and 1 store. The vectorized code has data conflicts

and incurs 9 vector loads and 1 vector store.

Furthermore, these disadvantages worsen as the order or di-

mensionality of stencil increases. For example, each scalar point

computation reuses 20 data points, loads 5 data points and stores 1

data point for a 2D25P stencil, while the vectorized code is able to

reuse only 5 vectors and incurs 20 vector loads and 1 vector store.

Thus the data redundancy is worse than that of the 2D9P stencil,

i.e. 20/5 > 9/3.

3.2 Scalar Folding
To preserve the data locality and reduce the number of data organi-

zation operations, we propose a folding strategy to address spatial

conflicts. The idea is based on the observation that the data conflicts

only appear in the innermost spatial loops for star stencils. Figure 1

(b) shows a 2D5P stencil. The two continuous vector computations

of (𝐽 , 𝐾, 𝐿,𝑀) and (𝑁,𝑂, 𝑃,𝑄) cause no data conflicts in the outer

spatial dimension, i.e. (𝐴, 𝐵,𝐶, 𝐷) and (𝐸, 𝐹,𝐺, 𝐻) do not share data.
Our idea is to first calculate the stencil along outer spatial di-

mensions and perform the unit-stride loop computation after a data

layout transformation that eliminates the data conflicts. We call the

calculation along one dimension a folding. Figure 2 (a) illustrates
the folding scheme for the 2D5P stencil with scalar computation.

The vectorization implementation will be described in the next

subsection. To update 𝑂 , it first folds the neighbors 𝐴 and 𝐷 along

the non-unit stride dimension (the column). The new 𝑂 which is

called a folded value is colored gray. The folded 𝑂 is then updated

with neighbors 𝐵 and𝐶 in the unit-stride dimension (the row). Note

that the last folding is performed with a transposed data layout

where 𝐵 and 𝐶 can be viewed as neighbors in the non-unit stride

dimension. This final result,𝑂 at the time step 𝑡 + 1 is colored green.
For a box stencil, there are data conflicts in all spatial dimensions

as shown in Figure 2 (b). Nevertheless, the folding strategy is similar

to that of star stencils. Figure 2 (b) illustrates the folding scheme

for the 2D9P stencil. Additionally, four neighbors at corners are

also folded vertically, such as 𝐸, 𝐺 folded to 𝐵 and 𝐹 , 𝐻 folded

to 𝐶 respectively. Then the three folded values 𝐵, 𝑂 and 𝐶 are

merged to the final result. Our folding strategy is easily extended

to higher-dimensional stencils. For a one-dimensional stencil, we

view the array of 𝑁 elements as a two-dimensional one of size

(𝑣𝑙) ∗ (𝑁 /𝑣𝑙) and there is no data dependence along the outermost

dimension. Therefore it only requires one folding operation with

the transposed layout.

E

B

FA

DG

CO

H

B

A

D

CO

A

D

O

B

C

O

E

G

B

A

D

O

F

H

C

B

C

O

(a) Star Stencil (2D5P) (b) Box Stencil (2D9P)

 Time Step t Time Step t+1 Folded Values

Figure 2: Illustration of computation folding strategy for
scalar 2D stencils.

a b c d
A B C D
E F G H

i
j

e
f

I J K L
M N O P
m n o p

k
l

g
h

Original Layout

a

E

A

F

B

b

G

C

c d

D

H

...

...

A

D
C
B

H
G
F
E

L
K
J
I M

N
O
P

e

B

A

F

E

f

J

I

g h

M

N

...

...
(b)Transpose(a)Vertical

Folding
(c)Horizontal

Folding

 Time Step t Time Step t+1 Folded Values

Shifts
Reuse

v t v l

Figure 3: Vectorized process for 2D9P box stencil.

3.3 Vectorization
To adopt the folding strategy for vectorization, we group 𝑣𝑙 vectors

as a vector set. The vector set is the basic processing granularity.

Algorithm 1 presents the pseudo-code of the vectorization for 2D9P

stencil with the folding strategy.

The program entry is contained in Stencil function and it tra-

verses the time loop. Indices of the two inner spatial loops are

stepped by 𝑣𝑙 = 4. Thus, each iteration of 𝑥 loop processes a row

block and 𝑦 loop splits each row block into vector sets. Line 10

to Line 15 performs on the first vector set 𝑉𝑆1 of each row block

for boundary compuation. At first, 𝑉𝑆1 is loaded into registers by

LoadVS (Line 10). The 16 elements 𝐴 to 𝑃 surrounded by a dashed

line in the left of Figure 3 illustrate an example. Then the top and

bottom vectors for this vector set are loaded to 𝑣𝑡 = (𝑎, 𝑏, 𝑐, 𝑑)
(Line 11) and 𝑣𝑏 = (𝑚,𝑛, 𝑜, 𝑝) (Line 12) by LoadVec, respectively.

Since the original data layout is characterized by redundancy-free

vertically, a set of vertical folding 𝑉𝐹𝑜𝑙𝑑𝑉𝑆 is performed on 𝑉𝑆1
(Line 13) by VFoldVS function, such as (𝑎, 𝑏, 𝑐, 𝑑) + (𝐴, 𝐵,𝐶, 𝐷) +
(𝐸, 𝐹,𝐺, 𝐻) → (𝐴, 𝐵,𝐶, 𝐷) as shown in Figure 3 (a). Now the vec-

tor set contains all four folded vectors updated with all neighbors in

the same column and is transposed (Line 14) for horizontal folding

in Figure 3 (b). Before entering the innermost loop, the left vector

𝑣𝑙 = (𝑒, 𝑓 , 𝑔, ℎ) must be vertically folded in scalar style (Line 15).

The innermost loop pipelines the stencil compuation. Each it-

eration of the 𝑦 loop loads a new vector set 𝑉𝑆2 and Lines 17 to

21 are identical to Lines 10 to 14 for the new vector set. The final

update of the previous vector set 𝑉𝑆1 requires a horizontal folding
𝐻𝐹𝑜𝑙𝑑𝑉𝑆 operation to gather the folded values based on the trans-

posed layout in registers, such as the (𝑒, 𝑓 , 𝑔, ℎ) + (𝐴, 𝐸, 𝐼, 𝑀)
+ (𝐵, 𝐹, 𝐽 , 𝑁) → (𝐴, 𝐸, 𝐼, 𝑀) as shown in Figure 3 (c). Though

the computation physically resembles the 𝑉𝐹𝑜𝑙𝑑𝑉𝑆 , logically the

elements are collected along each row. Thus we refer it as𝐻𝐹𝑜𝑙𝑑𝑉𝑆

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 2: Analytical register behaviours for different methods on Jacobi stencils (per vector)

Kernel 1D5P 2D9P 3D27P 1D-Heat 2D-Heat 3D-Heat

Operation
1

C. L. S. P. C. L. S. P. C. L. S. P. C. L. S. P. C. L. S. P. C. L. S. P.

AutoVec.
2

5 5 1 0 9 9 1 0 27 27 1 0 3 3 1 0 5 5 1 0 7 7 1 0

Reorg. 5 1 1 4 9 3 1 6 27 9 1 18 3 1 1 2 5 3 1 2 7 5 1 2

S-Fold 5 1 1 0 5 1.5 1 1 15 4.5 1 3 3 1 1 0 5 1.5 1 1 7 2 1 1

S&T-Fold 4.5 0.5 0.5 0 5 1 0.5 0.5 10 2.5 0.5 1.5 2.5 0.5 0.5 0 5 1 0.5 1 10 1.5 0.5 2

1
For better clarity, Computation, Load, Store, and Permute operations are abbreviated with C., L., S., and P. respectively.

2
Methods for Auto Vectorization, Data Reorganization, Spatial Folding, and Spatial&Temporal Folding are also abbreviated accordingly (similarly hereinafter).

(Line 22). Note that the right vector to the 𝐻𝐹𝑜𝑙𝑑𝑉𝑆 of 𝑉𝑆1 is the

first vector in the transposed 𝑉𝑆2. Symmetrically, we reuse the last

vector of𝑉𝑆1 (Line 24) as the left vector for the computation of the

next vector set.

Each vector set is stored with the transposed layout (Line 23

and 29) to the 𝑥-𝑦 swapped address. Thus each iteration of the

outermost time loop actually performs a transpose to the whole

Algorithm 1 Vectorization with Folding Strategy for the 2D9P

stencil. 𝑇%2 = 0, 𝑁𝑋%4 = 0 and 𝑁𝑌%4 = 0

1: function VFoldVS(v0, v1, v2, v3, v4, v5)
2: for 𝑖 = 1→ 4 do
3: v𝑖−1 ← VFold(v𝑖−1, v𝑖 , v𝑖+1)
4: end for
5: v1, v2, v3, v4 ← v0, v1, v2, v3
6: end function
7: function Stencil()

8: for 𝑡 = 1→ 𝑇 do
9: for 𝑥 = 1→ 𝑁𝑋 by 4 do
10: VS1 ← LoadVS(𝐴, 𝑥, 1)

11: v𝑡 ← LoadVec(𝐴, 𝑥 − 1, 1)
12: v𝑏 ← LoadVec(𝐴, 𝑥 + 1, 1)
13: VFoldVS(v𝑡 ,VS1, v𝑏)
14: Transpose(VS1)
15: v𝑙 ← FoldandSetVec(𝐴, 𝑥, 0)

16: for 𝑦 = 5→ 𝑁𝑌 by 4 do
17: VS2 ← LoadVS(𝐴, 𝑥,𝑦)

18: v𝑡 ← LoadVec(𝐴, 𝑥 − 1, 𝑦)
19: v𝑏 ← LoadVec(𝐴, 𝑥 + 1, 𝑦)
20: VFoldVS(v𝑡 ,VS2, v𝑏)
21: Transpose(VS2)
22: HFoldVS(v𝑙 ,VS1,VS2 [0])
23: Store(𝐵,VS1, 𝑦 − 4, 𝑥)
24: v𝑙 ← VS1 [3]
25: VS1 ← VS2
26: end for
27: VS2 [0] ← FoldandSetVec(A, x,y)

28: HFoldVS(v𝑙 ,VS1,VS2 [0])
29: Store(𝐵,VS1, 𝑦 − 4, 𝑥)
30: end for
31: 𝐴↔ 𝐵

32: 𝑁𝑋 ↔ 𝑁𝑌

33: end for
34: end function

data space if we ignore the computations in Algorithm 1. Figure 4

illustrates an example. The next iteration of the time loop works on

the transposed array whose pointer and sizes are swapped (Line 31

and 32) and the vertical folding and horizontal folding are physically

perform opposite ones. However, the code is still correct if the

stencil pattern is symmetric along the diagonals. Otherwise one

can simply add a code copy that manually swaps the 𝐻𝐹𝑜𝑙𝑑𝑉𝑆 and

𝑉𝐹𝑜𝑙𝑑𝑉𝑆 for even time iterations. In sum, the number of transpose

operations is decreased by half with our folding strategy since it

does not require the same data layout after each time iteration.

The spatial folding could also be applied to higher-order and

higher-dimensional stencils in the same manner easily. The pro-

posed vectorization scheme avoids data reloads compared with the

multiple load method and fewer inter/intra-vector permutations

compared with the data reorganization method. Generally, the in-

register transpose only requires 𝑣𝑙 log(𝑣𝑙) in-lane instructions for a
𝑣𝑙 × 𝑣𝑙 matrix. Thus each vector computation incurs log(𝑣𝑙) permu-

tations and the overhead is irrelevant to the order or dimensionality

of stencils.

Table 2 lists the numbers of arithmetic, load, store and data reor-

ganization operations. For the spatial computation folding (S-Fold)

on the 2D9P kernel, Algorithm 1 loads 6 vectors and stores 4 vectors

for updating a vector set in one iteration of the innermost loop.

The total arithmetic operations are 5 per vector. For other stencil

kernels, we can easily obtain similar results. Compared with the

auto vectorization and data reorganization methods, spatial folding

achieves fewer data accesses for all stencils and fewer computation

instructions for higher-dimensional box stencils.

4 TEMPORAL COMPUTATION FOLDING
4.1 Overview
In general, all grid points are only updated once before the round

starts for the next time step in stencil computation. Although most

a b c d
A B C D
E F G H

i
j

e
f

I J K L
M N O P
m n o p

k
l

g
h

Original Layout

e f g h
A E I M
B F J N

m
n

a
b

C G K O
D H L P
i j k l

o
p

c

d

Transpose Layout

 Time Step t Time Step t+1

Figure 4: Optimized order of storage for 2D stencils.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue

of the existing work utilizes blocking technique [5, 47, 48] to de-

crease the data transfers between main memory and cache, there is

no in-register data reuse between𝑚 successive time loops, where

𝑚 is called the temporal unrolling factor. On the contrary, the

straightforward implementation of reusing registers along the time

dimension produces massive intermediate results at the time step 𝑡

to 𝑡 +𝑚, which exacerbates excessive register spilling.

The existingwork and straightforward implementation discussed

above represent opposite extremes of register reusing in time itera-

tion space. Our approach is to seek a balance that the redundancy

of arithmetic calculation is eliminated along the time dimension,

and register pressure is alleviated simultaneously. To facilitate the

process of reducing redundant calculation in time iteration space,

we extend the proposed spatial folding approach to update the

grid points for 𝑚 time steps directly in registers. The temporal

computation folding is elaborated thoroughly based upon a prof-

itability analysis, and then it is optimized with shifts reusing to

obtain further performance gains.

4.2 Scalar Profitability Analysis
Figure 5 shows a scalar arithmetic expression for a representative

9-point box stencil with unrolling factor𝑚 = 2 on the center grid

point. A collect𝐶 (𝐸) in Equation 1 is defined to describe the number

of arithmetical instructions (add, multiply, multiply-add, etc.) used

for 2-step updates in the expression 𝐸.

𝐶 (𝐸) =
⋃
𝑠

{⟨𝑔,𝑤𝑔⟩|⟨𝑔,𝑤𝑔⟩ ∈ 𝐶 (𝐸𝑠)} (1)

For the original expression in Figure 5(a), the center point with

eight neighboring grid points are all updated to the state 𝑡 + 1 first,
and then these updates are swept from registers to memory. When

the next iteration for 𝑡 + 2 begins, these grid points of 𝑡 + 1 are

reloaded again. To obtain a 2-step update on the center point, the

computing instructions of ten subexpressions are all counted into

the collect 𝐶 (𝐸). In each subexpression 𝐸𝑠 , a pre-defined weight

𝑤𝑔 is assigned on each grid point and then a 9-way addition re-

sult is obtained. Since nine distinct point references are engaged

for each subexpression, we obtain a |𝐶 (𝐸) | = 10 × |𝐶 (𝐸𝑠) | = 90

for the expression 𝐸. It is worth noting that redundant arithmetic

operations are performed iteratively on the same point in differ-

ent subexpressions, and store/reload operations incur additional

interrupts during the computation process.

For the optimized expression in Figure 5(b), weights are all re-

assigned based on the𝑚-step expansion. A new arithmetical ex-

pression EΛ is determined by the folding matrix comprised of new

weights 𝜆. The five associative grid points of the same column are

folded with 𝜆 first, and then a Horizontal Folding is performed to

gather the obtained five folded values. Thus, the new collect in

Equation 2 is 25, which is obtained from the computation folding

on this point set with each grid point folded by 𝜆𝑔 .

𝐶 (EΛ) = {⟨𝑔, 𝜆𝑔⟩| grid 𝑔 used in EΛ weighted with 𝜆𝑔} (2)

The profitable index is defined in Equation 3, and a profitable

folding means the fraction of the cardinalities on two sets at least

exceeds a threshold 𝜃 ≥ 1. In this case, it gives a net profitable index

of 𝑃 (𝐸,EΛ) = 90/25 = 3.6 from Equation 3. Moreover, the interrupt

cost of store/reload operations is also eliminated completely in EΛ.

𝑃 (𝐸,EΛ) =
|𝐶 (𝐸) |
|𝐶 (EΛ) |

≥ 𝜃 (3)

4.3 Vectorized Multi-step Computation
In this subsection, we take a 2-step 2D9P box stencil [47, 48] as an

example to illustrate the details on our temporal folding approach in

Figure 6, which is a vectorized process of the optimized arithmetical

expression discussed in Section 4.2.

Data Preparation. Figure 6 depicts the codes and data preparation
for the example stencils. Based on the previous strategy in Section

3, the basic granularity of temporal folding is also constructed as

a 4×4 square of grid points denoted as 𝑠𝑜 . They are loaded from

cache to four registers as 𝑣0 to 𝑣3 respectively at time step 𝑡 .

Vertical Folding. Similar to the manipulation in Section 3.3, Ver-

tical Folding is performed first to collect neighbor points in the

same column. A new square of grid points derived from 𝑠𝑜 with

Vertical Folding is called a counterpart. Typically a𝑚-step update

contains 𝑚 + 1 counterparts at most. Equation 4 describes how

each counterpart is obtained by Vertical Folding, where 𝜆 is the

reassigned weight; superscripted 𝑛 is the counterpart number.

𝑣
(𝑛)
𝑖

=
∑𝑚

𝑡=−𝑚𝜆
(𝑛)
𝑡 · 𝑣𝑖+𝑡 (4)

For example, the weights for the first counterpart are reassigned as

𝝀 (1)
={1, 2, 3, 2, 1} by the foldingmatrix shown in Figure 6. According

to Equation 4, each 𝑣
(1)
𝑖

in the first counterpart 𝑐1 is calculated by

performing a sum on 𝑣𝑖−2, 2𝑣𝑖−1, 3𝑣𝑖 , 2𝑣𝑖+1, and 𝑣𝑖+2.

Horizontal Folding. With Vertical Folding completed, a local

transpose is performed subsequently for further Horizontal Folding

to collect the folded values in the same row:

𝑣
,
𝑖
=
∑𝑚

𝑡=−𝑚𝑣
(𝑐−|𝑡 |)
𝑖+𝑡 (5)

where 𝑐 is the total number of counterparts. Since reassignedweights

for the other two counterparts 𝑐2 and 𝑐3 are represented by 𝝀 (2) =

2𝝀 (1)
={2, 4, 6, 4, 2} and 𝝀 (3) = 3𝝀 (1)

={3, 6, 9, 6, 3}, the Equation 5

could be expanded as:

𝑣
,
𝑖
= 𝑣
(1)
𝑖−2 + 𝑣

(2)
𝑖−1 + 𝑣

(3)
𝑖
+ 𝑣 (2)

𝑖+1 + 𝑣
(1)
𝑖+2

= 𝑣
(1)
𝑖−2 + 2𝑣

(1)
𝑖−1 + 3𝑣

(1)
𝑖
+ 2𝑣 (1)

𝑖+1 + 𝑣
(1)
𝑖+2 .

(6)

Thus, a coarse result 𝑠𝑐 for 2-step updates on a point square 𝑠𝑜 is

obtained by only utilizing the square 𝑐1.

Weighted Transpose. Horizontal folding is followed by aweighted
transpose at last. Conventionally the stencil of Jacobi style is im-

plemented with two arrays [7, 48], storing the value at odd and

even time respectively. Therefore, the local transpose can be also

optimized away here, and the result 𝑠𝑟 could be organized to the

original layout by the transpose in Horizontal Folding alternately.

The |𝐶 (EΛ) | in Equation 3 is further decreased to 9, and we obtain

a profitable index 𝑃 (𝐸,EΛ) = 10 theoretically.

Table 2 also lists the analytical register behaviours for the spatial-

temporal folding (S&T-Fold) in the last row. For the 2D9P kernel, it

loads 9 vectors and stores 4 vectors for updating a vector set two

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

w1 w2 w1
w2 w3 w2
w1 w2 w1

for (i = -1; i ≤ 1; ++i)

B[i,j] = w1*(A[i-1,j+1]+A[i+1,j+1]+A[i-1,j-1]+A[i+1,j-1])+

endfor

for (j = -1; j ≤ 1; ++j)

w2*(A[i-1,j]+A[i+1,j]+A[i,j-1]+A[i,j+1])+

w3*A[i,j]

endfor

A[0,0] = w1*(B[-1,1]+B[1,1]+B[-1,-1]+B[1,-1])+

w2*(B[-1,0]+B[1,0]+B[0,-1]+B[0,1])+

w3*B[0,0]

A w1 w2 w1
w2 w3 w2
w1 w2 w1

. . .
w1 w2 w1

w2 w3 w2

w1 w2 w1

A B

(a) Naive approach for updating 2 time steps on the center point A(0,0)

v1 = λ1*�A[i-2,j+2]+A[i-2,j-2])+λ2*(A[i-2,j+1]+A[i-2,j-1])+λ3*A[i-2,j]
v2 = λ2*(A[i-1,j+2]+A[i-1,j-2])+λ4*(A[i-1,j+1]+A[i-1,j-1])+λ5*A[i-1,j]
v3 = λ3*(A[i,j+2]+A[i,j-2])+λ5*(A[i,j+1]+A[i,j-1])+λ6*A[i,j]
v4 = λ2*(A[i+1,j+2]+A[i+1,j-2])+λ4*(A[i+1,j+1]+A[i+1,j-1])+λ5*A[i+1,j]
v5 = λ1*�A[i+2,j+2]+A[i+2,j-2])+λ2*(A[i+2,j+1]+A[i+2,j-1])+λ3*A[i+2,j]
B[0,0] = v1+v2+v3+v4+v5

λ6 λ5 λ3λ3 λ5
λ5 λ4 λ2λ2 λ4
λ3 λ2 λ1λ1 λ2

λ3 λ2 λ1λ1 λ2
λ5 λ4 λ2λ2 λ4

A

v1 v5

v2 v4

v3

(b) Optimized approach for updating 2 time steps on the center ponit A(0,0)

v1 v2 v3 v4 v5

Vertical
Folding

Horizontal
Folding

λ1 = w1w1
λ2 = 2w1w2
λ3 = 2w1w1+w2w2
λ4 = 2(w1w3+w2w2)

λ5 = 2(2w1w2+w2w3)

λ6 = 2(2w1w1+w2w2)+
2w2w2+w3w3

B[0,0]

v2
v1

v4
v3v5

|C(E)|=9s

|C(E)|=90

|C(E)|=25A
INTERRUPTS OF STORE/RELOAD OPERATIONS

Folding Matrix

Figure 5: Illustration of scalar arithmetic expression for the 9-point box stencils with 𝑚 = 2. The approach is used to try to
minimize the collect 𝐶 (𝐸) during the computation process.

A B C D

2×

a b c d

e f g h

3×

E F G H

I J K L

2×

A B C D

e f g h

A B C D

E F G H

I J K L

M N O P

+

+

+

+

E F G H

2×

3×

2×

+

+

+

+

I J K L

2×

A B C D

E F G H

3×

M N O P

Q R S T

2×

I J K L

+

+

+

+

M N O P

2×

E F G H

I J K L

3×

Q R S T

U V W X

2×

M N O P

+

+

+

+

A E I M
B F J N
C G K O
D H L P

a b c d
e f g h
A B C D
E F G H

q u
r v

i m
j n

I J K L
M N O P
Q R S T
U V W X

s w
t

k o
p

xl

i j k l

m n o p

A E I M

B F J N

C G K O

2×

3×

2×

+

+

+

+

A E I M

m n o p

A E I M

B F J N

C G K O

D H L P

2×

3×

2×

+

+

+

+

B F J N

A E I M

B F J N

C G K O

D H L P

q r s t

2×

3×

2×

+

+

+

+

C G K O

B F J N

C G K O

D H L P

q r s t

u v w x

2×

3×

2×

+

+

+

+

D H L P

1 2 3 2
2 4 6 4
3 6 9 6
2 4 6 4

1
2
3
2

1 2 3 2 1

Vertical Folding Transpose Horizontal FoldingShifts Reuse

A E I M
B F J N
C G K O
D H L P

Results

 Original Data of Time Step t Vertical Folding Horizontal Folding Results of Time Step t + 2

for (i = 1; i ≤ N; ++i)

B[i,j] = w*(A[i-1,j+1]+A[i+1,j+1]+A[i-1,j-1]+

endfor

for (j = 1; j ≤ N; ++j)

endfor

for (t = 1; t ≤ T; ++t)

endfor

A[i+1,j-1]+A[i-1,j]+A[i+1,j]+
A[i,j-1]+A[i,j+1]+A[i,j])

Original Layout Folding Matrix2D9P Box Codes

×w2

Counterpart c1 Coarse result s

Result s

c

Basic computing granularity s

r

o

Shifts for
next reuse

Figure 6: Vectorized process of computation folding approach for 9-point box stencils with unrolling factor𝑚 = 2.

time steps. Thus the total arithmetic operations are 4.5 per vector.

The store instruction numbers are all decreased by half and the

load operations are also diminished.

5 IMPLEMENTATION
5.1 Shifts Reusing
Figure 7 depicts a brief sketch of the scalar 1-step stencil computa-

tions between two adjacent grid points F and G in data space. It can

be recognized from Figure 7 that there is potential for reusing shifts

within the successive stencil computation from grid point F to G,

and this gives us another reuse profitability of 2.25 by Equation 3.

For our approach in Figure 6, the last two vectors of transposed

counterpart 𝑐1 in each iteration can be reused as shifts between

computing squares. Therefore, the optimization of reducing reloads

across squares is enabled by utilizing the same data collected in the

A B C
E F G
I J K

B C
F G
J K

+
D
H
L

B C D
F G H
J K L

|C(E)|=9 |C(E)|=4GShifts ReuseF

Figure 7: Illustration of shifts reusing.

last round as input to be computed together, which contributes to

further performance gains. Similarly in Figure 3, the folded values

in the last step can also reside in registers temporarily to avoid

redundant arithmetical calculations and repetitive data transfers.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue

5.2 Tessellate Tiling
Vectorization and tiling are two orthogonal methods and they tar-

get at different levels. Tiling serves to exploit the data reuse at

cache levels, while vectorization boosts the computation using the

data parallelism at the execution level. In our work, we choose

the tessellation framework [47] to exploit the data reuse at cache

levels. It provides a simple and clear parallel framework with light-

weight loop conditions to allow fine in-core optimizations, which

makes the integration easier than the compiler approaches. The

benefits of our methods with tiling and parallelization scheme are

demonstrated in Section 6.4.

5.3 Code Generation
Provided with a mathematical look into various cases, it is observed

that all stencil kernels require the executions of identical and inde-

pendent operations on vector registers, which poses challenges to

efficient implementation on different architectures. Thus we notice

that some loops can be created by a generator to reduce the code

size and achieve performance portability. We abstract the algorith-

mic skeletons of the outer loops as a semi-automatic code generator.

The recurring patterns of stencil expression are wrapped and gen-

erated by the code generator. For the characteristic descriptions

of a stencil kernel, they are manually defined in a script file and

exposed as parameters to the code generator. Then the output of

the code generator is integrated into C code to simplify the parallel

programming of stencils.

6 EVALUATION
In this section, we evaluate our proposed scheme on varied stencils

used for real-world applications with AVX2 and AVX-512 instruc-

tions.

6.1 Setup
Machines. Experimental results presented in this paper have

been obtained using two different machines. The first machine

is composed of two Intel Xeon Gold 6140 processors with 2.30

GHz clock speed, which owns 36 physical cores organized into

two sockets. DDR4 DRAM and 6 memory channels are supported,

which yields a peak memory bandwidth of 127.5 GB/s. Each core

contains a 32KB private L1 cache, a 1 MB private L2 cache, and

a unified 24.75MB L3 cache. AVX-512 instruction set extension is

supported and it’s able to conduct operations for 8 double-precision

floating-point data in a SIMD manner, which yields a theoretical

peak performance of 73.6 GFlops/core (2649.6 GFlops in aggregate).

Table 3: Configuration for stencils used in experiments

Type Pts Problem Size Blocking Size

1D-Heat 3 10240000×1000 2000×1000
1D5P 5 10240000×1000 2000×500
APOP 6 10240000×1000 2000×500
2D-Heat 5 5000×5000×1000 200×200×50
2D9P 9 5000×5000×1000 120×128×60

Game of Life 8 5000×5000×1000 200×200×50
3D-Heat 7 400×400×400×1000 20×20×10
3D27P 27 400×400×400×1000 20×20×10

The other machine consists of two AMD EPYC 7452 32-core pro-

cessors running at 2.35GHz. Each core has a private 32KB L1 cache,

a 512KB L2 cache, and a shared 16MB L3 cache. It features the

AVX2 SIMD instruction set and a theoretical peak performance of

4812.8 GFLOPs. Concurrently, 8 DDR4 memory controllers provide

a memory bandwidth of 204.8 GB/s.

Benchmarks. We first performed the sequential block-free ex-

periments with three classic vectorization methods (Auto Vector-

ization [38], Data Reorganization [48], and DLT [15]) to investi-

gate the absolute performance on a single process in Section 6.3.

Then the newly related work (SDSL [16], Pluto [5], YASK[46] and

Tessellation [47]) was employed for further comparison on multi-

core architecture in Sention 6.4. It is worth noting that SDSL and

Tessellation are two related work extended with cache-blocking

techniques on DLT and Auto Vectorization methods repectively.

At last, the scalability was evaluated thoroughly compared with

highly-optimized work and state-of-the-art compilers (SDSL [16],

Pluto [5], YASK[46] and Tessellation [47]) in Section 6.5. The paral-

lelization was inherently supported by OpenMP scheme in all above

benchmarks, thus we utilized the OpenMP pragma parallel for on
shared memory machines. All programs were compiled using the

ICC compiler version 19.0.3, with the ’-O3 -xHost -qopenmp -ipo’

optimization flags.

Kernels. The detailed parameters for stencils used in experiments

are described in Table 3, which consists of three star kernels (1D-

Heat, 2D-Heat, and 3D-Heat) and three box kernels (1D5P, 2D9P,

and 3D27P) corresponding to the references [16, 48]. Star and box

equations are symmetric examples that can represent a wide variety

of stencil kernels. Moreover, we also collect a series of classic kernels

used in real-world applications [5, 28, 48]:

• APOP is a 1D3P stencil from two different input arrays to

calculate the American put stock option pricing.

• The Game of Life is a cellular automaton proposed by Con-

way, and the update of each grid depends on all 8 of its

neighbors.

The default value of total time steps ranges from 200 to 1000 in the

references. Thus, we use a larger value of 1000 in our experiments,

and the influence of it will be discussed in Section 6.3. Other param-

eters of each stencil are also fine-tuned based on reference work

to guarantee that the peak performance for all methods could be

reached exactly.

6.2 Impact of Data Preparation
In this subsection, the influence brought by data preparation is

investigated first along the time dimension on Jacobi stencils. For

DLT method, the major data preparation is the global dimension-

lifted transformation, while in our computation folding strategy

the in-register transpose substitutes. We employ the configurations

in Table 3 and perform stencil computations with or without data

preparations. Figure 8 shows the percentages of stencil computa-

tions ranging from 1 to 1,024 time steps.

As illustrated in Figure 8, our method could obtain a high com-

puting density continuously. The in-register transpose makes little

difference on the overall performance, which only decreases by

0.04% negligibly in 1D5P and 6.54% tolerably in 2D5P. However,

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

20 22 24 26 28 210 20 22 24 26 28 210 20 22 24 26 28 210

Time Time Time

3D-Heat DLT

3D-Heat Our
3D27P DLT

3D27P OurPe
rc

en
ta

ge
 fo

r s
te

nc
il

co
m

pu
ta

tio
n

(%
)

1D-Heat DLT

1D-Heat Our
1D5P DLT

1D5P Our

2D-Heat DLT

2D-Heat Our
2D9P DLT

2D9P Our

Figure 8: The percentages of stencil computations for Jacobi
stencils in single-thread blocking-free experiments.

L1 Cache L2 Cache L3 Cache Memory L1 Cache L2 Cache L3 Cache Memory

Intel Xeon Gold 6140 AMD EPYC 7452

Size Size

Figure 9: Absolute performance comparison for testedmeth-
ods in single-thread blocking-free experiments. The results
are shown separately with different machines.

DLT method is sensitive to dimension and time size distinctly. With

lower dimensions or higher time steps, the percentage of stencil

computation could reach a better result. This is primarily due to

the data layout is relatively simple in lower dimensions and trans-

formation cost is also diluted by long time size. The results also

corroborate the fact that the number of time loops should be large

enough to amortize the data preparation overhead in DLT method,

which has been discussed in Section 1 previously. Therefore, a larger

time size of 1,000 is used in our following experiments to leverage

the full strengths of DLT. Besides the requirements of time size, an

additional array is also required to store the transposed data by

DLT, which increases the storage pressure.

6.3 Sequential Block-free Results
Then we present the performance results of varied methods across

problem sizes ranging from L1 cache to main memory with a single

thread. The cache-blocking technique is not applied for investigat-

ing the pure improvements brought by vectorization on various

storage levels. The multiple loads and data reorganization methods

represent a class of auto-vectorization in modern compilers and re-

cent work [47, 48]. DLT is the dimension-lifting transpose approach

designed by Henretty [15]. All the methods are implemented by

hand-written codes optimized with the appropriate strategies to en-

sure fairness. First, we make the memory access aligned to 256-bit

boundary. This ensures that the access will not cross cache lines,

leading to performance reduction. Second, the loop unrolling is

performed by four steps in innermost loops, which makes the most

of available registers. Furthermore, though inplace implementation

is supported by our computation folding strategy, two arrays are

still used for storing the value at odd and even time respectively

like other methods.

Figure 9 shows the performance comparison of our methods with

the others. The results are illustrated separately in two subfigures

by two machines. It can be seen that our S&T-Fold method outper-

forms others apparently in both machines, which demonstrates the

effectiveness of the improvement of the flop/byte ratio. The S-Fold

also achieves better performance than the DLT in most cases. The

multiple loads method exhibits the worst performance among them

due to the overhead caused by redundant loads. Furthermore, the

performance drops apparently as the problem size moves from L1

cache to the memory hierarchy, which is mainly caused by the cost

of data transfers.

Then we report the detailed results on the relative improvements

of absolute performance on different storage levels in Table 4. The

performance improvement of our methods is the largest one in each

case, which is unconstrained to the storage level. This reflects the

best performance again and corresponds to the results of Figure 9.

Table 4: Performance improvements on different storage
level in single-thread blocking-free experiments

Methods AutoVec. Reorg. DLT S-Fold S&T-Fold

Machines I.
1

A. I. A. I. A. I. A. I. A.

L1 Cache 1.0x 1.0x 13x 1.4x 2.1x 2.2x 2.2x 2.2x 2.8x 3.0x

L2 Cache 1.0x 1.0x 1.1x 1.2x 1.4x 1.7x 1.8x 2.1x 2.5x 2.9x

L3 Cache 1.0x 1.0x 1.0x 1.3x 1.0x 1.8x 1.7x 2.1xx 3.0x 3.1x

Memory 1.0x 1.0x 1.0x 1.3x 1.0x 2.1x 1.8x 2.6x 2.7x 3.3x

Mean 1.0x 1.0x 1.1x 1.4x 1.4x 1.9x 2.0x 2.4x 2.8x 3.0x

1
For better clarity, two targeted machines Intel Xeon Gold 6140 and AMD

EPYC 7452 are abbreviated with I. and A. respectively.

6.4 Multicore Cache-blocking Experiments
In this subsection, we present the experiments that exhibit the

benefits of our methods with cache-blocking techniques and par-

allelization scheme. We combine our vectorization scheme with

tessellate tiling [48] and compare with the SDSL [16], Pluto [5],

YASK[46] and Tessellation [47]. The techniques that benchmarks

adopted for vectorization, cache-blocking, and parallelization are

listed in Table 5.

Table 5: Techniques for vectorization, cache-blocking, and
parallelization in benchmarks

Benchmarks vectorization Blocking Parallelization

SDSL [16] DLT [15] Split tiling OpenMP

Pluto [5] AutoVec. Diamond tiling [7] OpenMP

Tesselation [47] AutoVec. Tessellate tiling [48] OpenMP

YASK [46] Vector Folding [45] Loop tiling OpenMP

Our S&T-Fold Tessellate tiling OpenMP

Figure 10 and Figure 11 show the comparison for absolute per-

formance and speedups of the different benchmarks optimized by

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue
G

St
en

ci
ls

/s

Sp
ee

du
p

SDSL Pluto Our(S-Fold) Our (S&T-Fold) Gains with AVX-512 Speedup Speedup with AVX-512

1D-Heat 1D5P APOP 2D-Heat 2D9P Game of Life 3D-Heat 3D27P

Intel Xeon Gold 6140

Tessellation YASK

Figure 10: Performance and speedup comparisonwith cache-blocking onmulticore Intelmachine. The speedups of each group
are compared to the lowest base which is annotated with the triangles by default value of 1.

G
St

en
ci

ls
/s

Sp
ee

du
p

SDSL Pluto Our Our (2 steps) SpeedupTessellation YASK

1D-Heat 1D5P APOP 2D-Heat 2D9P Game of Life 3D-Heat 3D27P

AMD EPYC 7452

Figure 11: Performance and speedup comparisonwith cache-blocking onmulticoreAMDmachine. The speedups of each group
are compared to the lowest base which is annotated with the triangles by default value of 1.

the blocking techniques on two machines. Since some kernels are

not supported by SDSL, the speedups of each group are relative to

the base which is annotated with the speedup value of 1. Taking all

stencils with AVX2 instructions into account, remarkable perfor-

mance improvements are observed from our method with S&T-Fold,

demonstrating that our vectorization scheme provides a significant

benefit in a large problem size compared to the referenced work.

Moreover, the optimization with AVX-512 instructions in Figure

10 could obtain further performance gains. The performance of

SDSL is inferior to tessellation, which is resulted from the blocking

technique constrained to its data layout. A closer look at Figure 10

and Figure 11 indicate that the performance is relative to the shape,

dimension, and weight of the stencils. For star-shaped stencils,

higher performance improvements are obtained compared to the

box-shaped due to fewer neighbor points. For lower-dimensional

stencils, much higher reuse is achieved on the loaded inputs, which

exhibits better performance.

6.5 Scalability
We also evaluate the scalability of our schemes and benchmarks.

The detailed parameters are given in Table 3, where all problem

sizes exceed the L3 cache. As the experiments are performed across

a broad variety of stencil kernels, some of them are not supported

in all benchmarks. Since our tiling framework is the same as the

tessellation, the performance improvements of our method with

respect to it are fully derived from the vectorization.

It can be observed from Figure 12 and Figure 13 that our method

could achieve the highest performance while the SDSL obtain the

lowest performance. In 1D-Heat stencils, all these methods achieve

nearly linear scaling on both instruction sets and the proposed

temporal computation folding provides a significant improvement.

With the increase of the problem dimension, the scalability for all

methods drops as a result of the inherent complexity for multidi-

mensional stencil computations. Similarly, the overall performance

of high-order stencils also falls behind the corresponding low-order

results, which is resulted from complex data access patterns in high-

order stencils. Compared to the results implemented with AVX2

instructions, the performance of AVX-512 optimization on Intel

machine shows a further increase.

6.6 Discussion
In this subsection, we provide an analysis of the performance on

various configurations in previous experiments to tease out the

contributions from different aspects of our proposed scheme.

We first investigate the impacts of data preparation on the DLT,

which is a state-of-the-art vectorized method for stencils. Appar-

ently, high performance is obtained by the cost of specific stencil

parameters (low dimension or long time size), and that is not guar-

anteed in practical application. Our vectorized scheme, by contrast,

could achieve data preparation more efficiently.

Sequential block-free experiments examine a variety of vector-

ization methods and demonstrate that S&T-Fold can achieve 2.8x

and 3.0x improvements on Intel and AMD machines respectively

compared with baseline method. Moreover, DLT method is more

appropriate on the relatively small size, and this is partly explained

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) 1D-Heat (b) 1D5P (c) APOP (d) 2D-Heat

(e) 2D9P (f) Game of Life (g) 3D-Heat (h) 3D27P

0

20 10

36

036Cores 036 36

036

Cores0

360 0 36Cores0

36

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

250 160 100 60

60 50

SDSL Our (S&T-Fold, AVX-512)Our (S-Fold) Our (S&T-Fold)Pluto YASK Tessellation

Cores

Cores

Cores

Cores Cores

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

In
te

l X
eo

n
G

ol
d

61
40

Figure 12: Scalability for stencils of various orders with different dimensions on multicore Intel machine.

(a) 1D-Heat (b) 1D5P (c) APOP (d) 2D-Heat

(e) 2D9P (f) Game of Life (g) 3D-Heat (h) 3D27P

0

20 15

64

064Cores 064 64

064

Cores0

640 0 64Cores0

64

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

220 160 130 50

50 40

SDSL Our (S-Fold) Our (S&T-Fold)Pluto YASK Tessellation

Cores

Cores

Cores

Cores Cores

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

G
st

en
ci

ls
/s

AM
D

 E
PY

C
74

52

Figure 13: Scalability for stencils of various orders with different dimensions on multicore AMD machine.

by the less performance hit associated with additional dimension-

lifting transpose in memory. With the problem size ranging from L1

cache to main memory, clear insights are provided that the overall

performance trends drop consistently with the memory hierarchy

on both machines. Furthermore, AMD machine obtains a slightly

higher performance in the same memory hierarchy while Intel

machine achieves better results in the same problem size. This is

primarily contributed by the higher clock speed and smller cache

size on AMD machine.

Multicore experiments conduct stencil cases on various bench-

marks implementedwith cache-blocking techniques.Typically, mod-

ern Intel machines contain AVX-512 instructions capable of per-

forming on larger 512-bit registers, thus we also study the perfor-

mance of our scheme on AVX-512 architectures. The results reveal

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue

that they could contribute to better performance for our methods es-

pecially on 1D and 2D stencils. It is worth noting that the frequency

reduction called throttling exists in CPUs when heavy AVX2 and

AVX-512 extensions are involved. The slowdown is even worse

with more cores employed. For example, the turbo frequency of the

experimental Intel machine drops from 3.70 GHz to 3.00 GHz when

active cores are expanded to full 18 on each processor [40]. The

AVX-512 implementation has a further decrease to 2.10 GHz, which

contributes to the mediocre performance in 3D stencils. The overall

trends are in accord with the sequential block-free experiments,

and our method with S&T-Fold outperforms others obviously.

The scalability experiments demonstrate that our vectorized

scheme leveraging tessellate tiling outperforms the referenced

benchmarks across a broad variety of configurations. Constrained

to its specific data layout, SDSL is slower than other methods.

Since multidimensional or high-order stencils are more compute-

intensive, more dependency data are loaded into cache while they

are not fully utilized to perform their own stencil computation.

Thus, the overall performance for each method falls gradually with

the increasing dimensions or orders. Furthermore, an interesting

observation is the number of cores reaching peak performance on

two machines. Intel machine obtains the best result with all cores

active while AMD machine reach peak performance with slightly

over half cores. Nevertheless, the real number of cores reaching the

peak falls into the interval around 30 to 40 consistently on both

two machines. As mentioned above, AVX throttling contributes

to the frequency reduction with more active cores. Besides, more

inter-core communication is also a performance-limiting factor as

cores increase.

7 CONCLUSION
In this paper, we propose a novel spatial computation folding strat-

egy to overcome the spatial data conflicts efficiently for vectoriza-

tion in the data space. Then the temporal folding by reducing the

redundancy of arithmetic calculations in time iteration space is pre-

sented on the basis of the proposed spatial approach. Furthermore,

we describe how the proposed vectorization scheme is optimized

with shifts reusing for enhancing data reuse and integrated with

tessellate tiling for improving data locality. With the qualitative

analysis and quantitative experiments, we demonstrate that signifi-

cant performance improvements are achieved by our vectorization

scheme over state-of-the-art products such as Intel’s ICC and recent

work [5, 15, 16, 38, 46, 48].

ACKNOWLEDGMENTS
The authors would like to thank all the reviewers for their insightful

and valuable comments and suggestions. This work is supported by

the the National Key Research & Development Program of China

(2016YFB0200800), National Natural Science Foundation of China

under Grant No. 61972376, No. 62072431 and No. 62032023, the

Science Foundation of Beijing No. L182053.

REFERENCES
[1] Alfred V Aho, Stephen C Johnson, and Jeffrey D Ullman. 1976. Code generation

for expressions with common subexpressions. In Proceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on programming languages. 19–31.

[2] Randy Allen and Ken Kennedy. 2002. Optimizing compilers for modern architec-
tures: a dependence-based approach. Taylor & Francis US.

[3] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John

Shalf, Samuel Webb Williams, et al. 2006. The landscape of parallel computing

research: A view from berkeley. (2006).

[4] Krste Asanovic, Ras Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John D

Kubiatowicz, Edward A Lee, Nelson Morgan, George Necula, David A Patterson,

et al. 2008. The parallel computing laboratory at UC Berkeley: A research agenda

based on the Berkeley view. EECS Department, University of California, Berkeley,
Tech. Rep (2008).

[5] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012. Tiling stencil

computations to maximize parallelism. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–11.

[6] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella. 2015.

Compiler-Directed Transformation for Higher-Order Stencils. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium. 313–323.

[7] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy

Sadayappan. 2008. A practical automatic polyhedral parallelizer and locality

optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 101–113.

[8] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. Patus: A code

generation and autotuning framework for parallel iterative stencil computations

on modern microarchitectures. In 2011 IEEE International Parallel & Distributed
Processing Symposium. IEEE, 676–687.

[9] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,

Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. 2008. Stencil

computation optimization and auto-tuning on state-of-the-art multicore architec-

tures. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE, 1–12.

[10] Raúl de la Cruz and Mauricio Araya-Polo. 2014. Algorithm 942: Semi-Stencil.

ACM Trans. Math. Softw. 40, 3, Article 23 (April 2014), 39 pages. https://doi.org/

10.1145/2591006

[11] Steven J Deitz, Bradford L Chamberlain, and Lawrence Snyder. 2001. Eliminating

redundancies in sum-of-product array computations. In Proceedings of the 15th
international conference on Supercomputing. 65–77.

[12] Chris Ding and Yun He. 2001. A Ghost Cell Expansion Method for Reducing

Communications in Solving PDE Problems (SC ’01). 50–50.
[13] Matteo Frigo and Volker Strumpen. 2005. Cache oblivious stencil computations

(ICS ’05). 361–366.
[14] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. 2015. Modesto: Data-centric an-

alytic optimization of complex stencil programs on heterogeneous architectures.

In Proceedings of the 29th ACM on International Conference on Supercomputing.
177–186.

[15] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J Ramanujam,

and P Sadayappan. 2011. Data layout transformation for stencil computations

on short-vector simd architectures. In International Conference on Compiler Con-
struction. Springer, 225–245.

[16] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet, J. Ramanu-

jam, and P. Sadayappan. 2013. A Stencil Compiler for Short-Vector SIMD Archi-

tectures. In Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (ICS ’13). Association for Computing Machinery,

New York, NY, USA, 13–24. https://doi.org/10.1145/2464996.2467268

[17] F. Irigoin and R. Triolet. 1988. Supernode Partitioning (POPL ’88). 319–329.
[18] Guohua Jin, JohnMellor-Crummey, and Robert Fowler. 2001. Increasing Temporal

Locality with Skewing and Recursive Blocking (SC ’01). 43–43.
[19] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. 2010.

An auto-tuning framework for parallel multicore stencil computations. In 2010
IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE,
1–12.

[20] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and

Katherine Yelick. 2006. Implicit and explicit optimizations for stencil computa-

tions. In Proceedings of the 2006 workshop on Memory system performance and
correctness. 51–60.

[21] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam,

Atanas Rountev, and P Sadayappan. 2007. Effective Automatic Parallelization

of Stencil Computations. SIGPLAN Not. 42, 6 (June 2007), 235–244. https:

//doi.org/10.1145/1273442.1250761

[22] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The Cache

Performance and Optimizations of Blocked Algorithms (ASPLOS IV). 63–74.
[23] Kun Li, Honghui Shang, Yunquan Zhang, Shigang Li, Baodong Wu, Dong Wang,

Libo Zhang, Fang Li, Dexun Chen, and Zhiqiang Wei. 2019. OpenKMC: a KMC

design for hundred-billion-atom simulation using millions of cores on Sunway

Taihulight. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–16.

https://doi.org/10.1145/2591006
https://doi.org/10.1145/2591006
https://doi.org/10.1145/2464996.2467268
https://doi.org/10.1145/1273442.1250761
https://doi.org/10.1145/1273442.1250761

Reducing Redundancy in Data Organization and
Arithmetic Calculation for Stencil Computations SC ’21, November 14–19, 2021, St. Louis, MO, USA

[24] Tareq M. Malas, Georg Hager, Hatem Ltaief, and David E. Keyes. 2017. Mul-

tidimensional Intratile Parallelization for Memory-Starved Stencil Computa-

tions. ACM Trans. Parallel Comput. 4, 3, Article Article 12 (Dec. 2017), 32 pages.
https://doi.org/10.1145/3155290

[25] A. C. McKellar and E. G. Coffman, Jr. 1969. Organizing Matrices and Matrix

Operations for Paged Memory Systems. Commun. ACM 12, 3 (1969), 153–165.

[26] Jiayuan Meng and Kevin Skadron. 2009. Performance modeling and automatic

ghost zone optimization for iterative stencil loops on GPUs. In Proceedings of the
23rd international conference on Supercomputing. 256–265.

[27] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 2010. 3.5-D Blocking

Optimization for Stencil Computations on Modern CPUs and GPUs (SC ’10).
1–13.

[28] C.S. Department of University of Oregon. 2014. Stencil Pattern. https://ipcc.cs.

uoregon.edu/lectures/lecture-8-stencil.pdf [Online; accessed 29-July-2020].

[29] Fabrice Rastello and Thierry Dauxois. 2002. Efficient Tiling for an ODE Dis-

crete Integration Program: Redundant Tasks Instead of Trapezoidal Shaped-Tiles

(IPDPS ’02). 138–.
[30] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam, Louis-Noël

Pouchet, Atanas Rountev, and P Sadayappan. 2018. Register optimizations for

stencils on GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming. 168–182.

[31] P. S. Rawat, A. Sukumaran-Rajam, A. Rountev, F. Rastello, L. Pouchet, and P.

Sadayappan. 2018. Associative Instruction Reordering to Alleviate Register

Pressure. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. 590–602.

[32] Gabriel Rivera and Chau-Wen Tseng. 2000. Tiling Optimizations for 3D Scientific

Computations (SC ’00). Article 32.
[33] Aaron Sawdey, Matthew O’Keefe, Rainer Bleck, and Robert W Numrich. 1995.

The design, implementation, and performance of a parallel ocean circulation

model. In Proceedings of 6th ECMWF Workshop on the Use of Parallel Processors in
Meteorology: Coming of Age. 523–550.

[34] Yonghong Song and Zhiyuan Li. 1999. New Tiling Techniques to Improve Cache

Temporal Locality (PLDI ’99). 215–228.
[35] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice Rastello,

Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2014. A framework

for enhancing data reuse via associative reordering. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
65–76.

[36] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Seidel. 2010.

Cache oblivious parallelograms in iterative stencil computations. In Proceedings
of the 24th ACM International Conference on Supercomputing. 49–59.

[37] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk,

and Charles E. Leiserson. 2011. The Pochoir Stencil Compiler. In Proceedings
of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’11). Association for Computing Machinery, New York, NY,

USA, 117–128. https://doi.org/10.1145/1989493.1989508

[38] Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.

2002. Intel® OpenMP C++/Fortran Compiler for Hyper-Threading Technology:

Implementation and Performance. Intel Technology Journal 6, 1 (2002).
[39] Sundaresan Venkatasubramanian, RichardW Vuduc, and none none. 2009. Tuned

and wildly asynchronous stencil kernels for hybrid CPU/GPU systems. In Pro-
ceedings of the 23rd international conference on Supercomputing. 244–255.

[40] Wikichip.org. 2019. Wikichip of Intel Xeon Gold 6140. https://en.wikichip.org/

wiki/intel/xeon_gold/6140 [Online; accessed 29-July-2020].

[41] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm

(PLDI ’91). 30–44.
[42] M. Wolfe. 1989. More Iteration Space Tiling (Supercomputing ’89). 655–664.
[43] David Wonnacott. 2002. Achieving Scalable Locality with Time Skewing. Int. J.

Parallel Program. 30, 3 (June 2002), 181–221.
[44] David G Wonnacott and Michelle Mills Strout. 2013. On the scalability of loop

tiling techniques. IMPACT 2013 (2013).
[45] Charles Yount. 2015. Vector Folding: improving stencil performance via multi-

dimensional SIMD-vector representation. In 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. IEEE, 865–870.

[46] Charles Yount, Josh Tobin, Alexander Breuer, and Alejandro Duran. 2016. YASK-

Yet another stencil kernel: A framework for HPC stencil code-generation and

tuning. In 2016 Sixth International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing (WOLFHPC). IEEE, 30–
39.

[47] Liang Yuan, Shan Huang, Yunquan Zhang, and Hang Cao. 2019. Tessellating Star

Stencils. In Proceedings of the 48th International Conference on Parallel Processing.
1–10.

[48] Liang Yuan, Yunquan Zhang, Peng Guo, and Shan Huang. 2017. Tessellating

Stencils. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’17). Association for Computing

Machinery, New York, NY, USA, Article Article 49, 13 pages. https://doi.org/10.

1145/3126908.3126920

[49] Yongpeng Zhang and Frank Mueller. 2012. Auto-generation and auto-tuning

of 3D stencil codes on GPU clusters. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization. 155–164.

[50] Tuowen Zhao, Protonu Basu, Samuel Williams, Mary Hall, and Hans Johansen.

2019. Exploiting reuse and vectorization in blocked stencil computations on CPUs

and GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–44.

https://doi.org/10.1145/3155290
https://ipcc.cs.uoregon.edu/lectures/lecture-8-stencil.pdf
https://ipcc.cs.uoregon.edu/lectures/lecture-8-stencil.pdf
https://doi.org/10.1145/1989493.1989508
https://en.wikichip.org/wiki/intel/xeon_gold/6140
https://en.wikichip.org/wiki/intel/xeon_gold/6140
https://doi.org/10.1145/3126908.3126920
https://doi.org/10.1145/3126908.3126920

	Abstract
	1 Introduction
	2 Related Work
	3 Spatial Computation Folding
	3.1 Motivation
	3.2 Scalar Folding
	3.3 Vectorization

	4 Temporal Computation Folding
	4.1 Overview
	4.2 Scalar Profitability Analysis
	4.3 Vectorized Multi-step Computation

	5 Implementation
	5.1 Shifts Reusing
	5.2 Tessellate Tiling
	5.3 Code Generation

	6 Evaluation
	6.1 Setup
	6.2 Impact of Data Preparation
	6.3 Sequential Block-free Results
	6.4 Multicore Cache-blocking Experiments
	6.5 Scalability
	6.6 Discussion

	7 Conclusion
	Acknowledgments
	References

