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Abstract—Stencil computation is one of the most important
kernels in various scientific and engineering applications. A
variety of work has focused on vectorization and tiling techniques,
aiming at exploiting the in-core data parallelism and data locality
respectively. In this paper, the downsides of existing vectorization
schemes are analyzed. Briefly, they either incur data alignment
conflicts or hurt the data locality when integrated with tiling.
Then we propose a novel transpose layout to preserve the data
locality for tiling and reduce the data reorganization overhead
for vectorization simultaneously. To further improve the data
reuse at the register level, a time loop unroll-and-jam strategy is
designed to perform multistep stencil computation along the time
dimension. Experimental results on the AVX2 and AVX-512 CPUs
show that our approach obtains a competitive performance with
the classic vectorization methods (Auto Vectorization and Data
Reorganization), state-of-the-art compilers (Pluto and SDSL),
and highly-optimized work (DLT and Tessellation).

Index Terms—Stencil, Vectorization, Data locality, Data align-
ment conflict

I. INTRODUCTION

Stencil is one of the most important kernels widely used
across a set of scientific and engineering applications. It is
extensively involved in various domains from physical simu-
lations to machine learning [22]. Stencil is also included as one
of the seven computational motifs presented in the Berkeley
View [3], [36] and arises as a principal class of floating-point
kernels in high-performance computing.

A stencil contains a pre-defined pattern that updates each
point in a d-dimensional spatial grid iteratively along the time
dimension. The stencil’s order [36], [38] defines the dependent
relationship in a certain direction. If the order of a symmetric
stencil in one dimension is r, the value of one point at time
t is a weighted sum of (2r + 1) points at the previous time
[30]. The naive implementation for a d-dimensional stencil
contains d+1 loops where the time dimension is traversed in
the outmost loop and all grid points are updated in inner loops.
Since stencil is characterized by this regular computational
structure, it is inherently a bandwidth-bound kernel with a
low arithmetic intensity and poor data reuse [21], [35].

Performance optimizations of stencils have been exhaus-
tively investigated in the literature [10], [11], [23]. Traditional
approaches have mainly focused on either vectorization or
tiling schemes, aiming at improving the in-core data paral-
lelism and the data locality in cache respectively. These two
approaches are often regarded as two orthogonal methods
working at different levels. Vectorization seeks to utilize the
SIMD facilities in CPU to perform multiple data processing
in parallel, while tiling tries to increase the reuse of a small

set of data fit in cache. They actually complement each other
and can be subtly combined.

Prior work on vectorization of stencil computation primarily
falls into two categories. The first one is based on the asso-
ciativity of the weighted sums of neighboring points. Specif-
ically, the execution order of one stencil computation can be
rearranged to exploit common sub-expression or data reuse
at register or cache level [6], [25], [27], [38]. Consequently,
the number of load/store operations can be reduced and the
bandwidth usage is alleviated in optimized execution order.
The second one attempts to deal with the data alignment
conflicts [16], [17], which is the main performance-limiting
factor. The data alignment conflict is a problem caused by
vectorization. Since the data elements are stored contiguously
in memory, the neighbors for each element are loaded into
different slots in the same register by using vector operations.
Thus, stencil computation for each element requires the use of
either redundant and unaligned load operations from memory,
or frequent inter-register and intra-register data permutations,
to make adjacent elements remapped to the same slots in
different registers. One milestone approach to address the data
alignment conflict is the Dimension-Lifting Transpose (DLT)
method [16]. We will present a deep discussion on them in
the next section.

As one of the crucial transformation techniques to exploit
the parallelization and data locality for stencils, tiling, also
known as blocking, has been widely studied for decades.
Since the size of working sets in stencil-based applications
is generally larger than the cache capacity on a processor, the
spatial tiling algorithms are proposed to explore the data reuse
by changing the traversal pattern of grid points in one time
step. Generally, a grid point in cache is utilized to perform
stencil computation for all its neighbors before swapped out
cache. Thus, the data transfers between the cache and main
memory could be reduced. However, the improvement of such
tiling techniques is restricted to the size of the neighbor pattern
[21], [36]. Temporal tiling techniques have been developed to
allow more in-cache data reuse across the time dimension.

The aforementioned two approaches of stencil computation
optimizations often have no influence on the implementation
of each other. The fundamental reason is that the vectorization
typically applies to the innermost loop. Therefore, integrating
one technique of vectorization with another tiling scheme is
often straightforward. However, the data organization overhead
for vectorization may degrade the data locality. Furthermore, to
the best of our knowledge, most of the prior work only focuses
on temporal tiling technique on the cache level. This only opti-



mizes the data transfer volume between cache and memory and
the high bandwidth demands of CPU-cache communication is
still unaddressed or even worse with vectorization. We will
present a deep discussion of these two problems in the next
section.

In this paper, we first design a novel transpose layout to
overcome the input data alignment conflicts of vectorization.
The new layout is formed with an improved in-CPU matrix
transpose scheme, which achieves the lower bounds both
on the total number of data organization operations and the
whole latency. Compared with conventional methods, the
corresponding computation scheme for the new layout requires
less data organization operations, whose cost can be further
overlapped by arithmetic calculations. To enhance the data
reuse on the register level, we then propose an approach to
perform multiple time steps for stencil computations. The in-
register data can be reused to perform successive updates
along the time dimension, which has not explored in existing
work. Finally, we integrated the proposed layout with a tiling
framework. It only requires a slight modification of the new
vectorization scheme to preserve the data reuse ability of tiling.
The proposed vectorization scheme is evaluated with AVX2
and AVX-512 instructions for 1D, 2D, and 3D stencils. The
results show that our approach is obviously competitive with
the classic vectorization methods (Auto Vectorization [31] and
Data Reorganization [36]), state-of-the-art compilers (Pluto
[5], [7] and SDSL [17]) and highly-optimized work [16], [35].

This paper makes the following contributions:
• We propose an efficient transpose layout and corre-

sponding vectorization scheme for stencil computation.
The layout transformation utilizes an improved matrix
transpose of the lowest latency.

• We exploit the in-register data reuse by performing mul-
tiple time step computation based upon the new proposed
transpose layout.

• An integrated approach is proposed to perform a tiling
framework in conjunction with the vectorization scheme.

• We demonstrate that the proposed approach could
achieve superior performance compared to several highly-
optimized stencil benchmarks on multi-core processors.

The paper is organized as follows. Section 2 presents the
relevant background and elaborates on the addressed problem.
Section 3 introduces the proposed vectorization scheme and
the tiling technique. Section 4 provides experimental results
that demonstrate our approach produces a higher performance
compared to the benchmarks. In Section 5, we present the
related work and Section 6 concludes the paper.

II. BACKGROUND

A. Data Alignment Conflicts of Vectorization

As stated earlier in Section I, the input data alignment
conflict incurred by vectorization is a crucial performance-
limiting factor in stencil computation. In this subsection,
we take the 1D3P stencil as an example to illustrate this
fundamental problem caused by vectorization. Since in most

Stencil Code:
for (i = 1; i < N; ++i)

B[i] = a * (A[i-1] + A[i] + A[i+1]);
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Fig. 1. Data alignment conflicts handling in DLT.

existing work vectorization is restricted to innermost loops [9],
the codes shown in Figure 1 only illustrates the 1D3P stencil
of one time step.

In the i-th iteration of this scalar code execution, it loads
A[i+1] and B[i] to registers and reuses register data A[i− 1]
and A[i] referenced by the previous calculation of B[i − 1].
Observing the CPU-memory data transfer, this code is exactly
similar to a common array copy code, i.e. the memcpy
function [12]. The computation implementation inside CPU is
straightforward. Loop optimizations like loop unrolling also
preserve these properties.

The vectorization groups a set of data in a vector register
and processes them in parallel. The naive vectorization of the
1D3P stencil code computes contiguous elements in the output
array B. Assume the vector register holds 4 elements (vector
length vl = 4), the vectorization code performs the calculation
using vector operations and output (B[1], B[2], B[3], B[4])
with one vector register.

A well-known problem incurred by the vectorization of
stencil codes is the input data alignment conflicts. For ex-
ample, to compute (B[1], B[2], B[3], B[4]), it requires three
vectors: (A[0], A[1], A[2], A[3]), (A[1], A[2], A[3], A[4]) and
(A[2], A[3], A[4], A[5]). The element A[2] appears in all these
vector registers but at different positions. We call this a data
alignment conflict. Thus there is no corresponding simple
execution as the scalar code.

To address the data alignment problem, two common imple-
mentations are often adopted. The first one loads all the needed
elements from memory in a vector form straightforward, which
is adopted as Auto Vectorization by modern compilers. Due
to the low operational intensity, the stencil computation is
often regarded as a memory-starving application. Compared
with the scalar code, this multiple load vectorization method
further increases the data transfer volume. Moreover, in each
iteration of this code, it has at least two unaligned memory
references where the first data address is not at a 32-byte
boundary. Since CPU implementations favor aligned data loads
and stores, these unaligned memory references will degrade
the performance considerably.

The second solution is similar to the scalar code in terms of
the CPU-memory data transfer. It loads each input element to
vector register only once and assembles the required vectors



via inter-register and intra-register data permutations instruc-
tions. Compared with the multiple load method, this data
permutations method reduces the memory bandwidth usage
and takes the advantages of the rich set of data-reordering
instructions supported by most SIMD architectures. However,
the execution unit for data permutations inside the CPU may
become the bottleneck.

B. Dimension-Lifting Transpose (DLT)

One milestone approach to address the data alignment
conflict is the DLT method [16]. In DLT the original one-
dimensional array of length N is viewed as a matrix of size
vl*(N/vl), where vl is the vector length in vector elements.
For example, vl=4 for double-precision floats in a 256-bit vec-
tor. It then performs a global transpose. Figure 1 illustrates the
DLT method for a one-dimensional array of 28 elements. The
DLT layout overcomes the input data alignment conflicts. For
instance, the second vl = 4 elements in the transformed layout
are formed into one vector (B[1], B[8], B[15],B[22] and all
the three required input vectors: left vector (A[0], A[7], A[14],
A[21]), center vector (A[1],A[8],A[15],A[23]) and right vector
(A[2], A[9], A[15], A[23]) are free of data sharing and stored
contiguous in memory. DLT needs to assemble input vectors
for calculating output vectors at boundary.

DLT has the following disadvantages. First, DLT can be
viewed as vl independent stencils if we ignore the bound-
ary processing. Therefore when incorporated with blocking
frameworks, the data reuse decreases vl times. The reason is
that there is no data reuse among the vl independent stencils.
Second, DLT suffers from the overhead of explicit transpose
operations executed before and after the stencil computation.
For 1D and 2D stencils in scientific applications, the number
of time loops is often large enough to amortize the transpose
overhead. But for 3D and higher-dimensional stencils in other
applications like image processing, the time size is small that
makes the transpose overhead unignorable. Finally, it’s hard
to implement the DLT transpose in-place and it often chooses
to use an additional array to store the transposed data. This
increases the space complexity of the code.

III. THE TRANSPOSE LAYOUT

In this section, we first discuss the drawbacks of existing
vectorization methods and explain the distinctiveness of our
methods. Then we present a new transpose layout and its
corresponding stencil computation scheme. Next, we present
several further optimizations on the transpose layout including
the extension to multiple time steps, integration with a tiling
framework and an improved matrix transpose algorithm for
double precision floating-point numbers.

A. Motivation

From the hardware perspective, the critical approach to
boost performance is to fully utilize the execution units that
perform the arithmetic instructions. Since there is no data
dependence in one time-step iteration of stencil computations,
the only bottleneck is data preparation. Equivalently, the key
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Fig. 2. Register Transpose Layout for SIMD vector length of 4.

technique of vectorization is to address the data alignment
conflicts.

Our starting point is the observation of the disadvantages
of existing methods. The DLT is a promising method that
extremely reduces the data reorganization operations. How-
ever, essentially the DLT vectorization format hurts the locality
properties as mentioned above. In particular, the elements in
one vector are distant, thus there is no data reuse among
them. On the contrary, the straightforward multiple load and
data reorganization methods load contiguous element in one
vector. They lead to the optimal data locality when integrated
with a temporal tiling scheme. These two methods seem to
be at two extreme ends of a balance between the number
of reorganization operations of data in CPU and the reuse
ability of data in cache. Our scheme proposed in Section III-B
seeks to preserve the “in-register” data locality by taking the
advantages of the rich register assembling instruction set and
efficient implementations in modern CPUs.

Then the temporal tiling on register level in Section III-C
is devised based on our proposed scheme. To the best of
our knowledge, in-core exploitation of multiple time steps of
stencil computations hasn’t been considered in existing work.
Experimental results also show a significant improvement with
this strategy.

Moreover, it’s inefficient to integrate DLT with a temporal
tiling technique, especially for high-dimensional stencils as ex-
hibited in SDSL [17]. Besides the data locality damage, DLT is
inappropriate to temporal tiling due to the boundary processing
and transformation layout. Our method reserves the original
data layout for the natural data locality of stencil computations
with an integrated tiling framework in Section III-D.

The existing work has shown that the global matrix transfor-
mations, which are required by DLT, are time-consuming and
demand extra memory quota. We propose an efficient in-core
transpose scheme in Section III-E and the reorganizations are
executed on-the-fly with stencil computations. Consequently,
the cost is insignificant.

B. Locally Transpose

To preserve the data locality and reduce the number of
data organization operations, we apply a matrix transpose to a
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Fig. 3. Illustration of stencil computation for transpose layout.

small sub-sequence of contiguous elements. Specifically, like
the dimension-lifting approach in DLT, the one-dimensional
view to the sub-sequence is substituted by a two-dimensional
matrix view. To perform vectorization after a matrix transpose,
the column size of the matrix should be equal to the vector
length vl. Let the row size be m, the size of the matrix is then
vl ∗m. Our locally transpose layout is equivalent to the DLT
when m = N/vl and the original data layout when m = 1.

After the matrix transpose, it still requires some data re-
organizations for computing the first and last one of the m
vectors. For example, if m = 1, the original data preparations
of the left and right vectors must be done for computing each
output vector. This is the trade-off between data locality and
the number of data preparations explained above.

There are several considerations for deciding the size m.
First, m should be large enough to hide the overhead of
the data reorganizations for the first and last vectors by the
actually arithmetic operations of the middle vectors. Assume
the order of a stencil is r, then the number of arithmetic
operations of the middle vectors is (2r+1)∗ (m−1)+1. The
number of data operations is 4r since the first and last vectors
need 2r vectors and assembling each of them requires two
reorganization instructions as will be explained shortly. Thus
m should be at least 3. Notice that this limitation is irrelevant
to the order r. Second, to avoid an additional array that is
needed to store the transposed data as in the DLT format, it’s
desirable to complete the matrix transpose in CPU. Thus the
m input vectors and additional auxiliary vectors must be kept
in the CPU vector register file. In this work we always set
m = vl. The final reason is that transposing a matrix of size
vl ∗ vl is easier to implement on modern CPU products. We
will present a highly efficient algorithm for matrix transpose
of size vl ∗ vl later.

Figure 2 illustrates the transpose layout for a one-
dimensional stencil with a vector length of four. The matrix
transposes of every sub-sequence of vl∗vl length is performed
before and after the stencil computation. In the rest of the
paper, we also refer to the vl vectors as a vector set (VS).
Note that in the implementation a vector set is always aligned
to a 32-Byte boundary.

The update of one vector set of the 1D3P stencil requires
two assembled vectors. One is the left dependent vector of its
first vector and the other is the right dependent vector of its last
vector. Figure 3 describes the data reorganization of these two

vectors. The first vector is (A,E, I,M) and its left dependent
vector is (Z,D,H,L) which is stored in two distant vectors
in the transpose layout, (∗, ∗, ∗, Z) and (D,H,L, ∗). These
two vectors are combined by a blend instruction followed
by a permute operation to shift the components to the right
circularly.

The stencil computations of the vector set are straightfor-
ward as shown in Figure 3. We then achieve an efficient
vectorization scheme by performing lower-overhead matrix
transpose and two data operations per vector set. Moreover,
the proposed vectorization scheme avoids data reloads com-
pared with the multiple load method and frequent inter-vector
permutations compared with the data reorganization method.
The transpose layout could also be applied to higher-order and
multidimensional stencils in the same manner.

C. Unroll-and-jam the Time Loop

In general, stencil computation is restricted to its input data
alignment conflicts, and all elements are only updated once
before the round starts in the next time step. Although blocking
technique [5], [35], [36] can be utilized to decrease the data
transfers between main memory and cache, there is no in-
register data reuse between successive time loops. Therefore
the in-CPU flops/byte ratio is limited by the stencil pattern.
To the best of our knowledge, computation for multiple time
steps in registers is not explored in existing work.

We develop a in-register unroll-and-jam strategy of time
loops based on locally transpose in Section III-B. It loads
one element at time dimension t and updates it k time steps
before storing it to memory. k is called the unrolling factor.
The normal execution corresponds to the case of k = 1. If
k > 1 the execution is equivalent to unroll the time loop k
times and jam them. Consequently, it improves the in-CPU
flops/byte ratio by k times. A one-dimensional example is
illustrated in this subsection and the strategy is also applicable
to multidimensional stencils.

Overall the algorithm is straightforward. After updating one
vector set, we keep the result in registers and process the
next neighbor vector set. Then the current vector set can be
forwarded along time dimension one more step using the new
value of the right neighbor.

Algorithm 1 shows the pseudo-code of our multiple time
steps updating scheme. The COMPUTE function receives a set
of vl vectors and their dependent vectors that are assembled
by the ASSEMBLE function. It computes the elements in the
vector set by one time step. Notice that this is an in-place
updating that the value of last time will be overwritten.

The main function traverses the time loop stepped by the
unrolling factor k. For simplicity, we assume T is divisible
by k. In each iteration of the while loop, every element is
forwarded k steps along the time dimension. The booting
computation prepares the data at head needed by the following
pipelined updating. The top part of Figure 4 illustrates the case
of k = 2 after a booting computation. The vector sets VS1 to
VSk have been updated k−1 to 0 times, respectively. Due to
the overwriting property of the COMPUTE function, it needs
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Algorithm 1 Unroll-and-jam the Time Loop
1: function ASSEMBLE(va,vb)
2: vc= mm256 blend pd(va,vb)
3: vc= mm256 permute4×64 pd(vc)
4: return vc

5: end function
6: function COMPUTE(vleft, v1, v2, v3, v4, vright)
7: v0 ← ASSEMBLE(vleft,v4)
8: v5 ← ASSEMBLE(v1,vright)
9: for i = 1→ 4 do

10: vi−1 ← STENCIL(vi−1, vi, vi+1)
11: end for
12: v1,v2,v3,v4 ← v0,v1,v2,v3

13: end function
14: function MULTIPLETIMESTEPS(VS1:k,vrl0:k−1,k)
15: for j = k + 1→ N do
16: VSk+1 ← Load the j-th Vector Set
17: for i = k → 1 do
18: vrli ← VSi[3]
19: COMPUTE(vrli−1,VSi[0 : 3],VSi+1[0])
20: end for
21: Store VS1

22: for i = 1→ k do
23: VSi ← VSi+1

24: vrli−1 ← vrli
25: end for
26: end for
27: end function
28: function MAIN( )
29: while t < T do
30: Booting computation.
31: MULTIPLETIMESTEPS(VS1:k,vrl0:k−1,k)
32: Epilogue computation.
33: t+ = k
34: end while
35: end function

to preserve the value of the last time of the vector to each
vector set’s left, denoted as vrli. As the figure shows, vrli
and VSi[3] store the value of the same vector at time t − 1
and t, respectively.

The MULTIPLETIMESTEPS function forwards all the vector
sets from right to left by one time step. Meanwhile, it preserves
the old value of their rightmost vector in vrl. At the end of
each iteration, VS1 has been updated k times and is stored in
memory. Then after some data reassignments, the next loop is
ready to execute. Each iteration loads and stores one vector set
of vl∗vl elements and performs k∗vl∗vl stencil computations.
As mentioned above, it increases the in-CPU flops/byte ratio
by k times.

From the algorithm, we see that it needs k vector sets and
k additional vectors to unroll-and-jam the time loop, i.e., total
(vl+1)∗k registers in addition to coefficient vector registers. In
modern CPUs, the typical number of available vector registers
is vl∗4, where vl is the capacity of double precision variables
in one register, therefore in this work we always set k = 2.

There is another advantage of the algorithm. Conventionally
the stencil of Jacobi style is implemented with two arrays,
storing the value at odd and even time respectively. If we set
k = 2, then the input and output value are all at the even
time. It’s legal to reuse the input data space and make the
whole computation in-place. The space usage is then reduced.

D. Integrated With Tiling

Vectorization and tiling are two orthogonal methods. They
target at different levels. Vectorization boosts the computation
using the data parallelism at the execution level, while tiling
serves to exploit the data reuse at cache levels. The transpose
layout described above identifies a vectorization technique as
the solution to the data alignment conflict for stencils. The
multiple time update further improves the data reuse ability at
the CPU vector register level. In the following, we present the
combination of the transpose layout and a tiling framework.

The tessellation tiling [35] can be viewed as a tessellation in
iteration space by utilizing shaped tiles. Figure 5 (a) and Figure
5 (b) illustrate the tiling framework for a one-dimensional sten-
cil. The iteration space is tessellated by triangles and inverted
triangles in alternative stages. Thus, concurrent execution is
processed by two stages which are started in each triangle
with a given time range first, followed closely by the execution
of inverted triangles over the same time range concurrently.
Updates in different time steps are distinguished from each
other by different colors, and the state of each element along



1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2

3 3 3
4

2 2 2 2 2
3 3 3

4

0 0 0 0 0 0 0 0 0 0 0 0 0 00
1 1

0 0

4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4
3 3 3 3 3 3 3

2 2 2 2 2
1 1 1

0

3 3 3 3
2 2 2

1 1
0

3 3 3 3
2 2 2
1 1
0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

 

（a） （b）

（c）

（d）

  VS1[1:3]     VS2[0:3] … VSN-1[0:3]
N-2 vector setsBoundary vector set Boundary vector set

      VSN[0:2]

  
Time Step 0 Time Step 1

 
Time Step 2

0 1 2 3
Time Step 3 Time Step 4

4  

Fig. 5. Tessellate tiling iteration space for 1D updated with two time steps
on register transpose layout.

the time dimension is represented with a number in Figure
5. For the example in Figure 5 (a), the new state of each
triangle contains (0,1,2,3,4,3,2,1,0) where the center element
is updated four steps and its neighbors are updated fewer
steps proportional to the distance with the center element. To
make all elements updated with the same steps, two half parts
from adjacent triangles constitute new inverted triangles and
the elements are updated with the state (4,3,2,1,0,1,2,3,4). As
Figure 5 (c) shows, all elements are updated to four steps by
adding the projection of the triangles with inverted triangles.
With the tessellate tiling strategy, concurrent execution for
different tiles is enabled over a given time range without
redundant computation.

The only problem for applying the transpose layout is
the calculations at the two boundaries of each block. The
execution of triangles is a ’shrinking’ process, the range of
processed elements decreases as the time forwards. Similarly,
an ’expanding’ process occurs in the execution of inverted
triangles. Since the physical neighbor elements are stored apart
from each other in one vector set, the calculations of the vector
set that covers a boundary are too complex to implement.
As the basic computing unit in the transpose layout is a
vector set, we convert the vector set at boundary back to the
original format before the computation and employ a simple
data reorganization method to process them. As illustrated in
Figure 5 (d), the shrinking and expanding process could be
simplified in this way. When the boundary slides away, the
vector set is transposed again.

Further, the register transpose layout and time loop fusion
make it feasible to achieve multiple time steps computation in
registers over the tiles efficiently without reloading operations.

The tessellate tiling could also be applied for multidi-
mensional stencil computations. For a d-dimensional stencil,
tessellation in iteration space contains d + 1 stages. Similar
to the 1D stencil example in Figure 5, the spatial space in
stage i is tessellated by tilesi (0 ≤ i ≤ d). tiles1 is a
hypercube (typically a line segment in 1D, square in 2D, cube
in 3D). tilesi+1 is built by recombining the sub-tiles split from
adjacent tilesi along some dimensions. Applying the transpose
layout to higher-dimensional stencils is exactly similar to the
one-dimensional case since the layout only affects the unit-
stride dimension.
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E. Transpose

Unlike previous work [16] that performs a global
dimension-lifted transformation, we only need a transpose
on-the-fly for each register set twice throughout the whole
process. The lower bound on the memory operations for
completing a matrix transpose of size vl ∗ vl is vl log(vl),
e.g., 8 data reorganization instructions for vl = 4. In modern
CPU architectures, these 8 instructions can be launched con-
tinuously in 8 cycles. However, as detailed in Section V, the
implementation of existing algorithm generally adopts lane-
crossing instructions, which increases the overhead by 25%.

Figure 6 illustrates our improved version where the long-
latency instructions are hidden by their following single-
cycle instructions. In the first stage, pairs of two vectors
with distance 2, e.g., (A,B,C,D) and (I, J,K,L), exchange
data using the permute2f128 instruction. In the second
stage, the pairs of two adjacent vectors, e.g., (A,B, I, J)
and (E,F,M,N), swap elements by the unpackhi or
unpacklo instruction. The total cost of the new transpose
scheme is then reduced to 8 cycles. Similarly, the transpose
by using AVX-512 instructions contains three stages where the
last stage consists of in-lane instructions.

IV. EVALUATION

To achieve the proposed scheme efficiently, we employ the
Advanced Vector Extensions (AVX) for vectorized implemen-
tation. First proposed by Intel in March 2008, AVX is an
instruction set for microprocessors that rely on the x86 family
of instruction set architectures [14]. AVX2 expands most
integer operations to 256 bits and introduces fused multiply-
accumulate (FMA) operations. Now, AVX-512 expands AVX
to 512-bit operations using a new enhanced vector extension
(EVEX) prefix encoding. In this section, we evaluate our
proposed scheme for 1D, 2D and 3D stencils with AVX2 and
AVX-512 instructions.

TABLE I
PARAMETER DESCRIPTION FOR STENCILS USED IN EXPERIMENTS

Dim Pts Problem Size Blocking Size

1D 3 10240000×1000 2000×1000
1D 5 10240000×1000 2000×500
2D 5 3000×3000×1000 200×200×50
2D 9 3000×3000×1000 120×128×60
3D 7 128×128×128×1000 23×23×10
3D 27 128×128×128×1000 23×23×10



A. Setup

a) Platforms: Our experiments were performed on a
machine composed of two Intel Xeon Gold 6140 processors
with 2.30 GHz clock speed, which owns 36 physical cores
organized into two sockets. Each core contains a 32KB private
L1 data cache, a 1 MB private L2 cache, and a unified
24.75MB L3 cache. It is also configured with 6 memory
channels providing a max bandwidth of 127.96 GB/s per
processor. AVX-512 instruction set extension is supported and
it’s able to conduct operations for 8 double-precision floating
point data in a SIMD manner, which yields a theoretical
peak performance of 73.6 GFlop/s/core (2649.6 GFlop/s in
aggregate).

b) Baselines: We first performed the sequential block-
free experiments with three classic vectorization methods
(Auto Vectorization [31], Data Reorganization [36], and
DLT [16]) to investigate the absolute performance on a single
process in Section IV-B. Since the recent tiling technique
proposed by Yuan [36] and the nested/hybrid tiling tech-
nique (denoted as SDSL, which is the name of the software
package.) presented by Henretty [17] outperform the other
stencil research like Pluto [5], [7] and Pochoir [30], we then
take them for further comparison on multicore architecture in
Section IV-C. At last, the scalability was evaluated thoroughly
compared with highly-optimized work and state-of-the-art
compilers (SDSL [17], Pluto [5], and Tessellation [35]) in
Section IV-D. The techniques that all benchmarks adopted for
vectorization, register tiling, cache blocking, and paralleliza-
tion are listed in Table II.

TABLE II
TECHNIQUES FOR VECTORIZATION, CACHE-BLOCKING, AND

PARALLELIZATION IN BENCHMARKS

Benchmarks Vectorized Register Cache ParallelizationMethods Tiling Blocking

SDSL [17] DLT [16] - Split tiling [17] OpenMP
Pluto [5] AutoVec. - Diamond tiling [7] OpenMP
Tesselation [35] AutoVec. - Tessellate tiling [36] OpenMP
Our∗ Locally Trans. U.&J. Integrated tessellate OpenMP

∗For better clarity, Locally Transpose, Unroll-and-jam the Time
Loop, and Integrated With Tiling proposed in our work are ab-
breviated with Locally Trans., U.&J., and Integrated tessellate
respectively.

c) Kernels: The detailed parameters for stencils of vari-
ous orders used in experiments are described in Table I, which
consists of four star stencils (1D 3-Points, 1D 5-Points, 2D 5-
Points, and 3D 7-Points) and two box stencils (2D 9-Points
and 3D 27-Points) corresponding to the references [17], [36].
Time blocking sizes are the last numbers in the Problem Size
column of Table I. The default value of total time steps is
1000 or 200 in the references. Thus, we fix it as a larger
value of 1000 in our experiments. Other parameters of each
stencil are also fine-tuned on the basis of references work to
guarantee that the peak performance for all methods could be
reached exactly. All programs were compiled using the ICC
compiler version 19.0.3, with the ’-O3 -xHost -qopenmp -ipo’
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Fig. 7. Absolute performance comparison for tested methods in single-thread
blocking-free experiments. The results are shown separately with different
total time steps.

optimization flags. Since the performance is sensitive to the
stencil parameters, significant efforts are required in automatic
tuning and this will be done separately as future work.

d) Metrics: Most stencil work (e.g., DLT [17],
SDSL [26], Tessellation [35], [36], Pluto [5], etc.) exhibits
results in terms of arithmetic performance (Stencils/s or
Flop/s). In this work, we also adopt the metric of stencils per
second (Stencils/s) defined in Equation 1 for measuring the
performance. Here, Nx, Ny , Nz are the stencil size for each
dimension; T is the iteration item; time is the total execution
time. Since stencil computation is memory-intensive, memory
throughput is also a metric to measure the performance for
stencil computation. The related discussion is expanded in
Section IV-D on memory bandwidth for an additional analysis.

stencils per second =
Nx ·Ny ·Nz

time
× T (1)

B. Sequential Block-free Results

In this subsection, we present performance results of varied
methods across problem sizes ranging from L1 cache to main
memory with a single thread. The spatial and temporal block-
ing method are not applied to them for investigating the pure
improvements on various storage levels. The multiple loads
and data reorganization methods represent a class of auto-
vectorization in modern compilers [36]. DLT is the dimension-
lifting transpose strategy designed by Henretty [16]. The
used stencil is the classic Jacobi-style one-dimensional Heat
equation kernel. All the methods are implemented by hand-
written codes optimized with the appropriate strategies such
as alignment and loop unrolling to ensure fairness.

Figure 7 shows the performance comparison of our methods
with the other three methods. The results are illustrated sep-
arately in two subfigures on the basis of the total time steps
T . It can be seen that our method updating two time steps
outperforms others apparently in both experiments, which
demonstrates the effectiveness of the improvement of the
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Fig. 8. Absolute performance comparison for varied methods in multicore
cache-blocking experiments. The tiling size is fixed in L1 or L2 cache level.
The results are shown separately with different total time steps.

flop/byte ratio. Our method without time loop unroll-and-
jamming also achieves better performance results than the
hand-written DLT in most cases. The performance has a
decrease at the size of 1000 in L1 cache. This can be attributed
to the cheaper dimension-lifting transpose operation in small
size for DLT. The multiple loads method exhibits the worst
performance among them due to the overhead caused by
redundant loads.

TABLE III
PERFORMANCE IMPROVEMENTS ON DIFFERENT STORAGE LEVEL IN

SINGLE-THREAD BLOCKING-FREE EXPERIMENTS

Storage Data DLT Our Our
Level Reorganization (2 steps)

L1 1.28x 2.06x 2.16x 3.13x
L2 1.11x 1.37x 1.67x 2.07x
L3 1.01x 0.95x 2.02x 2.92x

Memory 1.00x 1.01x 1.97x 2.96x

Mean 1.11x 1.35x 1.98x 2.81x

To further investigate the effect of total time steps T , we
perform a tenfold increase on the default value to T = 10000,
which is illustrated in Figure 7 (b). It can be observed that the
performance trends of T = 10000 are still largely consistent
with the results in Figure 7 (a). However, the performance
of our method falls slightly behind the DLT in L1 cache,
and this performance anomaly is primarily due to the diluted
dimension-lifting transpose cost by overly long time steps.
Notably, only the performance of DLT in L1 cache drops
gradually as problem size increases for both results in Figure
7, which is resulted from a costly data layout transformation
and indicates a potential bottleneck for cache-blocking.

C. Multicore Cache-blocking Experiments
In this subsection, we present the multicore experimental

results configured with the same stencil kernel in Section IV-B.

TABLE IV
PERFORMANCE IMPROVEMENTS ON DIFFERENT STORAGE LEVEL IN

MULTICORE BLOCKING EXPERIMENTS

Blocking Tessellation Our Our
Level (Two time steps)

L3 Cache L1 1.43x 2.54x 2.99x
L2 1.21x 2.58x 3.01x

Memory L1 1.62x 2.76x 3.42x
L2 1.39x 2.92x 3.58x

Mean L1 1.56x 2.69x 3.29x
L2 1.32x 2.79x 3.48x

The results are shown in Figure 8 (a) and Figure 8 (b) with
time steps of T = 1000 and T = 10000 respectively. All
methods adopt cache-blocking techniques, and we demonstrate
the benefits of them progressively. The SDSL employs a split
tiling technique (nested tiling in 1D, hybrid tiling for higher
dimensions) to achieve temporal blocking. The Tesselation
utilizes auto vectorization supported by the compiler [36]. The
curve for ”our” shows the performance of proposed locally
transpose + Integrated tiling. The “our(two time steps)” curve
presents the results of locally transpose + Integrated tiling +
Unroll-and-jam the time loop strategy.

As can be seen from Figure 8 (a), the performance drops
apparently as the problem size moves from L3 cache to the
memory hierarchy, which is mainly caused by the cost of
data transfers. We also further investigate the influence of the
block size on performance. In the case of L1 blocking, the
observed performance is higher than that with L2 blocking
overall. Since the smaller stencils could be prefetched into
cache directly, the performance gap between different blocks
is further aggravated when the problem size lies in the memory
hierarchy. Surprisingly, our method with two time steps could
still take up a leading position, approximately 3.29x and
3.48x improvements are obtained compared to SDSL with L1
blocking and L2 blocking respectively. The performance of
SDSL is inferior to tessellation, which is resulted from the
blocking technique constrained to its data layout. Longer time
steps of T = 10000 are evaluated in Figure 8 (b), and similar
performance trends but higher values are observed compared
with Figure 8 (a).

Table IV shows the detailed performance improvements on
different storage levels as before. Our method could obtain
better optimization results when the problem size lies in L3
cache and memory. The speedup ranges from 2.54 to 2.76x
with L1 blocking, showing that our method integrated with
tiling provides a significant benefit over others on varied
problem size.

D. Scalability

We also evaluate the scalabilities of our schemes. The de-
tailed parameters are given in Table I, where all problem sizes
exceed the L3 cache. Since our tiling framework is the same
as the tessellation scheme, the performance improvements of
our method with respect to the tessellation method are fully



TABLE V
DASHBOARD FOR MEMORY BANDWIDTH (BW) IN SCALING EXPERIMENTS

Kernels Pts Stencil traffic Memory BW BW utilization
(stencils/s) (GB/s) (%)

1D-Heat 3 2.58 41.28 16.13
1D5P 5 3.05 48.91 19.11
2D-Heat 5 3.67 58.74 22.95
2D9P 9 4.02 64.33 25.13
3D-Heat 7 4.77 76.38 29.84
3D27P 27 4.90 78.49 30.66

Theoretical Memory Bandwidth (GB/s) 127.96

derived from the vectorization. Here the results by state-of-
the-art compiler Pluto [4], [7] are also shown for an auxiliary
comparison on scaling performance.

Figure 9 illustrates the results of 1D, 2D and 3D stencils
implemented with AVX2 and AVX-512 instructions respec-
tively. The SDSL doesn’t support the AVX-512 architecture.
We also omitted Pluto since it has been proved to be in-
ferior to the Tessellation technique. It can be observed that
our method could obtain the highest performance while the
SDSL performs the lowest performance in most cases. In
one-dimensional stencils, all these methods achieve nearly
linear scaling on both instruction sets and the proposed time
loop fusion strategy provides a significant improvement. With
the increase of the problem dimension, the scalability for
all methods drops as a result of the inherent complexity
for multidimensional stencil computations. Compared to the
results implemented with AVX2 instructions, the performance
of the right half in Figure 9 shows a slight increase.

The speedups and scalabilities for high-order stencils in-
cluding 1D5P, 2D9P, and 3D27P also decrease gradually from
1D to 3D. However, the overall performance falls behind the
corresponding one-order results, which is resulted from com-
plex data access patterns in high-order stencils. Our method
could also obtain a substantial performance improvement in
all experiments. Taking all stencils with AVX2 instructions
into account, remarkable performance benefits are observed
from our method updating two time steps, 3.52x and 2.92x re-
spectively for 1D3P and 1D5P. The performance improvement
ranges from 1.66x to 2.77x with a mean of 2.10x, demonstrat-
ing that our vectorization scheme provides a significant benefit
in a large problem size compared to the referenced work. For
scalability, our method obtains a 20.1x speedup while the value
of DLT is only 9.4x for 3D7P, which indicates a sustainable
performance for our method in multidimensional stencils.

The achieved throughput of global memory is related to
the transferred data size, as well as the efficiency of utilizing
cache. It is approximately proportional to the transferred data
size before saturating the global memory bandwidth if there is
no contention. The memory bandwidths under our vectorized
methods with 36 cores are shown in Table V, which are
obtained by Intel Processor Counter Monitor [1]. As can be
seen from Table V, the memory throughput increases with the
growing order and dimension of stencils. Since the stencils

with smaller order or dimension are calculated more quickly,
the cache requires to be updated frequently, which leads to
a larger size of transferred data. The bandwidth of 3D27P is
still unsaturated with a 30.66% utilization, which illustrates
an effective cache-blocking optimization in our vectorized
methods.

E. Discussion

In this subsection, we provide an analysis of the per-
formance on various configurations in previous experiments
to tease out the contributions from different aspects of our
proposed scheme.

Sequential block-free experiments examine a variety of
vectorization methods and demonstrate that our scheme with
multiple time steps updating can achieve an considerable
2.81x improvement on average compared with the multiple
loads method. Subsequently, the performance gains for a
larger time steps are still significant and consistent with the
results of the small time steps. Moreover, the DLT method is
more appropriate only on the relatively small size and long
time steps, and this is partly explained by the performance
penalty associated with additional dimension-lifting transpose
in memory. Since the problem size ranges from L1 cache
to main memory, clear insights are provided that the overall
performance trends drop consistently with various memory
hierarchy.

Multicore cache-blocking experiments conduct stencil cases
with 36 cores, and an average 2.69x speedup is obtained
by our method on the basis of SDSL. Due to the reduced
data transfers by our time loop unroll-and-jam, our method
updated with two time steps achieve a further 3.29x speedup.
We also study the influence of blocking size, and the results
prove that appropriate L1 blocking or in-cache problem size
could contribute to better performance for all methods. The
overall trends are in accord with the sequential block-free
experiments, and our method updated with two time steps
outperforms others obviously.

The scalability experiments demonstrate that our vectorized
scheme leveraging tessellate tiling successfully outperforms
the referenced fastest multicore stencil work to date across a
broad variety of configurations. Constrained to its specific data
layout, DLT is slower than other methods. Since multidimen-
sional or high-order stencils are more compute-intensive, more
dependency data are loaded into cache while they are not fully
utilized to perform their own stencil computation. Thus, the
overall performance for each method falls gradually with the
increasing dimensions or orders, and our method could still
obtain a better performance.

V. RELATED WORK

Research on optimizing stencil computation has been inten-
sively studied [16], [17], [20], [35], [36], and it can be broadly
classified as optimization methods to improve the computation
performance and enhance the data reuse.

Vectorization by using SIMD instructions is an effective
way to improve computation performance for stencils. Prior
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Fig. 9. Performance comparison for stencils of various orders with different dimensions in a multicore environment.

work on optimizing the order of execution instructions could
decrease loads/stores operations to relieve the register pressure,
while only the individual element in each vector could be
reused [39]. Basu designs a vector code generation scheme
to reuse several vectors in the computation process, and it
is constrained to constant-coefficient and isotropic stencils
[6]. YASK [34] could improve data reuse by using common
expression elimination and unrolling based on their vector-
folding methods with fine-grained blocks [33], which is less
feasible for high-order complex stencils [38]. Henretty pro-
poses a new method DLT [16], [17] to overcome input data
alignment conflicts at the expense of a dimension-lifting trans-
pose, which makes it infeasible to perfectly utilize the tiling
technique as a result of its spatially separated data elements
[21]. Essentially DLT can be viewed as the combination of
strip-mining (1-dimensional tiling) and out-loop vectorization
[17]. Specifically, the original innermost loop traverses the
corresponding dimension from 1 to N . In DLT the loop is
transformed to a depth-2 loop nest where the size of the outer
loop equals the vector length vl and the inner loop processes
each subsequence of length N/vl. Note that the strip-mining
was also introduced for vectorization [2]. However, the con-
ventional usage is to make the size of the innermost loop be the
vector length and substitute it by a vector code. In addition, the
in-place matrix transpose involved in our work has also been
widely studied and a kernel of 4×4 matrix transpose consists
of two stages basically. Hormati splits the vector register to

some 128-bit lanes [18], and the lane-crossing instructions for
double incur a longer latency, typically 3 to 4 cycles. Zekri
[37] use in-lane instructions in four stages only for float
type. Springer [29] utilize SHUFFLE and PERMUTE2F128
instructions for double type in two stages, while it requires
8 integers as parameters.

Tiling is one of the most powerful transformation techniques
to explore the data locality of multiple loop nests. Notably
work for stencil computations includes hyper-rectangle tiling
[24], time skewed tiling [19], diamond tiling [4], cache
oblivious Tiling [13], split-tiling [17] and tessellating [35].
Wonnacott and Strout present a comparison on the scala-
bility of many existing tiling schemes [32]. Most of these
techniques are compiler transformation techniques and this
paper integrated the new proposed layout with the tessellation
scheme for simplifying the implementation. For stencil com-
putations, a variety of auto-tuning frameworks [8], [15], [28]
have been presented by using varied hyper-rectangular tiles
to exploit data reuse alone. However, redundant computations
are involved in these work to resolve the introduced inter-tile
dependencies that hinder the concurrent execution of shaped
tiles on different cores. The Pluto [7] is able to generate the
diamond tiling for 1D stencil. Bandishti [4] extended it to
higher dimension stencils.



VI. CONCLUSION

In this paper, we propose a novel transpose layout to
overcome the input data alignment conflicts efficiently for vec-
torization. A time loop unroll-and-jam strategy with in-register
multiple time steps processing is designed on the basis of the
proposed transpose layout. Furthermore, we describe how the
proposed vectorization scheme is integrated with a tessellate
tiling framework for enhancing data reuse and concurrency.
With the qualitative analysis and quantitative experiments,
we demonstrate that significant performance improvements
are achieved by our vectorization scheme over state-of-the-
art products such as Intel’s ICC and recent work [7], [17],
[31], [35], [36].
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[11] Fabian Dütsch, Karim Djelassi, Michael Haidl, and Sergei Gorlatch.
Hlsf: A high-level; c++-based framework for stencil computations on
accelerators. WOSC ’14, pages 41–4, 2014.

[12] Stephan Falke, Florian Merz, and Carsten Sinz. Extending the theory
of arrays: memset, memcpy, and beyond. In Working Conference on
Verified Software: Theories, Tools, and Experiments, pages 108–128.
Springer, 2013.

[13] Matteo Frigo and Volker Strumpen. Cache oblivious stencil computa-
tions. ICS ’05, pages 361–366, 2005.

[14] Intel Intrinsics Guide. Url: https://www.intel.com/content/www/us
/en/docs/intrinsics-guide/index.html. IntrinsicsGuide (access date:
12.6.2021).

[15] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. Modesto: Data-centric
analytic optimization of complex stencil programs on heterogeneous
architectures. In ICS 2015, pages 177–186, 2015.

[16] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti,
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