
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-019-02860-3

1 3

FastNBL: fast neighbor lists establishment for molecular
dynamics simulation based on bitwise operations

Kun Li1,2 · Shigang Li1 · Shan Huang1,2 · Yifeng Chen3 · Yunquan Zhang1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In the molecular dynamics simulation, an important step is the establishment of
neighbor list for each particle, which involves the distance calculation for each parti-
cle pair in the simulation space. However, the distance calculation will cause costly
floating-point operations. In this paper, we propose a novel algorithm, called Fast
Neighbor List, which establishes the neighbor lists mainly using the bitwise opera-
tions. Firstly, we design a data layout, which uses an integer value to represent the
three-dimensional coordinates of a particle. Then, a bunch of bitwise operations and
two subtraction operations are used to judge whether the distance between a pair
of particles is within the cutoff radius. We demonstrate that our algorithm can deal
with the periodic boundary seamlessly. We also use single instruction multiple data
(SIMD) instructions to further improve the performance. We implement our algo-
rithm on Intel Xeon E5-2670, ARM v8, and Sunway many-core processors, respec-
tively. Compared with the traditional method, our algorithm achieves on average
1.79x speedup on Intel Xeon E5-2670 processor, 3.43x speedup on ARM v8 proces-
sor, and 4.03x speedup on Sunway many-core processor. After using SIMD instruc-
tions, our algorithm achieves on average 2.64x speedup and 14.43x speedup on Intel
Xeon E5-2670 and ARM v8 processors, respectively.

Keywords Neighbor list · Bitwise operations · SIMD · Molecular dynamics

 * Shigang Li
 shigangli.cs@gmail.com

1 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

2 School of Computer and Control Engineering, University of Chinese Academy of Sciences,
Beijing, China

3 HCST Key Lab at School of EECS, Peking University, Beijing, China

http://orcid.org/0000-0003-0022-7865
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02860-3&domain=pdf

 K. Li et al.

1 3

1 Introduction and related work

Molecular dynamics simulation is widely used to investigate the physical proper-
ties, biological structures, or chemical processes for a large number of particles [25].
In the past decades, significant time and resources have been devoted to the devel-
opment of such molecular dynamics packages, including GROningen MAchine [1,
26] (GROMACS), Large-scale Atomic/Molecular Massively Parallel Simulator [10,
23, 29, 30] (LAMMPS) and Nanoscale Molecular Dynamics [19, 28] (NAMD),
among many other commercial and open-source options. These packages provide
robust molecular dynamics implementations for massively parallel computers. A
more recent addition is HOOMD-blue [5, 6], which was developed and optimized
for GPUs. HOOMD-blue performs an order of magnitude faster than a multi-core
CPU in typical benchmarks on a single NVIDIA GPU [16]. Despite these advances
in hardware and software, molecular dynamics simulation still remains challenging
because the computation of interaction forces is extremely time-consuming [20].
This is mainly because the force computation requires to calculate the interactions
between each pair of particles in the system, giving rise to O(N2) evaluations of the
interaction in each time step, where N is the total number of particles. It is very
costly to carry out such a calculation when a great quantity of particles are simu-
lated. Some typical optimization methods are designed for reducing the cost in this
process.

Typically, the interaction forces decrease rapidly as the distance between particles
increases, which are called short-range forces [27, 35]. Based on the above assump-
tion, a cutoff radius rcut is introduced to reduce the cost of force computation. If the
distance between particles is greater than rcut , the interaction forces are neglected.
This means a central particle only has interaction forces with its neighbor particles,
which are located in a globe with the central particle as its center and rcut as its
radius [3]. Thus, the cost of force computation is reduced significantly. Typically,
the neighbor particles of a central particle are detected and stored in the neighbor
list, and this process is called neighbor lists establishment [34]. Consequently, the
performance bottleneck moves from force computation to neighbor lists establish-
ment. Two typical algorithms are used to establish the neighbor lists. One is Verlet
table algorithm [32] and the other is cell linked list algorithm [21].

The basic idea of the Verlet table algorithm is to construct a list of neighboring
particles for every particle. The definition of rskin is introduced, which is an exten-
sion of rcut [31]. rskin produces a skin surrounding the globe, of which the radius
is rcut . Let rext = rcut + rskin . A particle is added in a neighbor list of a central par-
ticle if the distance between them is less than rext [24, 35]. It is critical for setting
rskin large enough, so that the exact neighbor particles (those which are less than
rcut away from the central particle) are all included in the neighbor lists in a pre-
sented number of time steps. In this way, the neighbor lists remain unchanged for
a certain number of time steps [2, 32], which reduces the frequency of neighbor
lists reconstruction. Since each pair of particles have to be evaluated during the
neighbor lists establishment, the computational complexity is O(N2) , where N is
the total number of particles [14, 35]. The Verlet table algorithm is appropriate

1 3

FastNBL: fast neighbor lists establishment for molecular…

for the situation where the total number of particles is relatively small and the
particles move slowly in the space [35].

The cell linked list algorithm is characterized by its cell partition and linked
lists. The simulation space is partitioned into cells, the edge of which is usually
equal to or larger than rcut . All particles are distributed to these cells according to
their positions. For each cell, it has 8 neighbor cells for a 2D simulation space or
26 neighbor cells for a 3D simulation space [17, 35]. Since the edge of each cell
is equal to or larger than rcut , the neighbor particles for a central particle can only
locate in the cell where the central particle locates, or locate in its neighbor cells.
Each cell maintains a link list to store the particles located in the cell. Assume
that the molecular dynamics space is divided into Mx ⋅My ⋅Mz cells, the average
number of particles in a cell is Nc = N∕(Mx ⋅My ⋅Mz) . Thus, the computational
complexity for neighbor lists establishment using the cell linked list algorithm is
O(27NNc) in a 3D simulation space. The cell linked list algorithm constructs the
neighbor lists faster than the Verlet table algorithm. However, it has to update the
particles located in each cell (O(N) complexity) and reconstruct the neighbor lists
after each time step, which is more frequent than the Verlet table algorithm.

The cell linked list algorithm constructs neighbor lists faster and efficiently
but a large quantity of particles need to be scanned in every fixed-time interval,
the cost of which is extremely expensive in the whole computation process. The
Verlet table algorithm reduces the frequency of the neighbor lists reconstruction,
while the cell linked list algorithm reduces the computational complexity for each
time of neighbor lists construction. However, both of them adopt the Euclidean
Metric [9] to calculate the distance between two particles, and then put one par-
ticle into the other particle’s neighbor list if the distance is less than the cutoff
radius. For two particles P0 (x0, y0, z0) and P1 (x1, y1, z1) , the distance between
them is calculated by

Equation (1) involves some expensive operations in terms of the clock cycles cost by
the processor, such as the square root operation.

To remove the expensive operations in the traditional method, we propose a
Fast NeighBor Lists establishment algorithm, abbreviated to FastNBL, which only
involves bitwise and subtraction operations. Typically, the bitwise and subtraction
operations run much faster than the square root operation and a little faster than
the multiplication operation on modern processors [7, 13]. Firstly, we propose a
new data layout to transform the three-dimensional coordinates information of
each particle into a single integer value, which consists of three bit segments cor-
responding to three-dimensional coordinates, respectively. Then, based on the
data layout, we use a series of bitwise operations and two subtractions to rapidly
bypass the non-neighbor particles. The periodic boundary condition judgment is
also achieved easily using FastNBL. We further exploit the instruction-level par-
allelism by Single Instruction Multiple Data (SIMD) instructions. Performance
evaluation is conducted on Intel Xeon E5-2670, ARM v8, and Sunway many-core

(1)Dis =

√
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2

 K. Li et al.

1 3

processors. Compared with the traditional method, our algorithm achieves on
average 1.79x speedup on Intel Xeon E5-2670 processor, 3.43x speedup on ARM
v8 processor, and 4.03x speedup on Sunway processor. After using SIMD instruc-
tions, our algorithm achieves on average 2.64x speedup and 14.43x speedup on
Intel Xeon E5-2670 and ARM v8 processors, respectively.

The paper makes the following contributions:

– We propose the FastNBL algorithm to accelerate the neighbor lists establish-
ment. FastNBL only adopts two subtractions and several bitwise operations to
accomplish the judgment of neighbor particles, which significantly outperforms
the traditional methods.

– We use SIMD instructions to exploit the instruction-level parallelism on ARM
v8 and Intel Xeon E5-2670 processors.

– We demonstrate that the proposed FastNBL algorithm can deal with the periodic
boundary condition easily.

In the next section, we discuss the motivation of our work. Section 3 introduces the
detailed procedure for the FastNBL algorithm. The periodic boundary condition pro-
cessing and the SIMD optimization are also discussed in this section. Experimental
results and analysis on ARM v8, Intel Xeon E5-2670 and Sunway processors are
presented in Sects. 4 and 5 concludes.

2 Motivation

2.1 The verlet table and the cell linked list algorithms

Algorithm 1 lists the Verlet table algorithm for creating neighbor lists. From line 1 and
line 3, we can see the computational complexity is O(N2) , since two for-loop structures
exist, where N is the total number of particles [4, 35]. The computation overhead mainly
comes from lines 5 and 6, namely the distance calculation based on Euclidean Metric.

Algorithm 1 The Verlet table algorithm
1: for i = 1 to N do
2: nbn[i] = 0
3: for j = 1 to N do
4: if (i != j) then
5: dx = xj − xi, dy = yj − yi, dz = zj − zi
6: d = sqrt (d2x + d2y + d2z)
7: if (d ≤ rext) then
8: nblist[i][nbn[i]] = j
9: nbn[i]++
10: end if
11: end if
12: end for
13: end for

1 3

FastNBL: fast neighbor lists establishment for molecular…

Algorithm 2 lists the cell linked list algorithm. The cell edge is usually set as the
cutoff distance rcut so that all particles in 27 cells, or in the volume of 27 r3

cut
 , will

be scanned in evaluation procedure [17, 35]. The computational cost of building the
neighbor list is highly decreased by restricting the neighbor search for each particle
in a set of several cells. The particles, which locate in a cell, are stored in a linked
list maintained by the cell. The head pointers for all the linked lists maintained by
the cells are stored in the headPointers array. As can be seen from Algorithm 2, the
first for-loop perform a traversal for N particles. For each particle, it loops over the
27 neighbor cells (line 4) to check the neighbor particles rather than the whole space
like verlet algorithm. Assuming the average number of particles that each cell has is
Nc , then the computational complexity for the cell linked list algorithm is O(27NNc) .
Although it has lower computational complexity than the Verlet table algorithm, it
has to be called every time step to update the neighbor lists. The main computation
overhead also comes from the distance calculation based on Euclidean Metric (lines
9 and 10).

Algorithm 2 The cell linked list algorithm
1: for i = 1 to N do
2: nbn[i] = 0
3: //Loop over 27 neighbor cells: Cell0 to Cell26
4: for Cellk = Cell0 to Cell26 do
5: pointer = headPointers(Cellk)
6: j = pointer− > particleID
7: while do(j �= 0)
8: if j �= i then
9: dx = xj − xi, dy = yj − yi, dz = zj − zi
10: d = sqrt (d2x + d2y + d2z)
11: if (d ≤ rcut) then
12: nblist[i][nbn[i]] = j
13: nbn[i]++
14: end if
15: end if
16: pointer = pointer− > next
17: j = pointer− > particleID
18: end while
19: end for
20: end for

2.2 Performance problems in the existing algorithms

Apparently, the frequent distance calculation is the main cost for constructing the
neighbor lists for both algorithms. As shown in lines 5 and 6 in Algorithm 1 and
lines 9 and 10 in Algorithm 2, the distance calculation based on Euclidean Metric
needs five addition or subtraction operations, three multiplication operations, and
one square root operation. On modern processors, it commonly costs 1 clock cycle
for addition/subtraction and 10 clock cycles for multiplication operations. Addition
or subtraction operation is a little faster than the multiplication operation. For the
square root operation, it usually takes up thousands of clock cycles, which is quite

 K. Li et al.

1 3

time-consuming for massive computation in molecular dynamics simulation. On the
contrary, it only costs 1 clock cycle for a bitwise operation. In this paper, we pro-
pose the FastNBL algorithm, which only needs two subtractions and thirteen bitwise
operations. As a result, FastNBL improves the computation efficiency remarkably by
employing fast bitwise operations to replace traditional distance calculation in the
procedure of neighbor lists establishment for either the Verlet table algorithm or the
cell linked list algorithm.

3 Fast neighbor lists establishment based on the bitwise operations

In this section, we discuss the FastNBL algorithm in detail. Figure 1 presents the
key steps of the FastNBL algorithm. For the first three steps, FastNBL transforms
the original three-dimensional coordinates of each particle into an integer value,
called “integer coordinate”. An integer coordinate consists of three bit segments,
which represent the three-dimensional lattice coordinates of a particle, respectively.
The last six steps include a series of bitwise operations and two subtraction opera-
tions performed on the two integer coordinates for each pair of particles, and output
whether one particle is a neighbor of the other particle.

3.1 The key steps for the FastNBL algorithm

Step 1. Build the lattice coordinates
Figure 2a exhibits an example of the particles distribution in a 3D simulation

space. The length of each dimension is Lx , Ly , and Lz , respectively. The original
coordinates of each particle are represented by three floating-point values. For
example, (x0, y0, z0) are the original three-dimensional coordinates for a central par-
ticle P0 ; (x1, y1, z1) are the original three-dimensional coordinates for particle P1.

The FastNBL algorithm adopts an integer value to store the position infor-
mation of each particle. However, the original coordinates are represented by
floating-point values. If the rounding operations are used to change the original
floating-point coordinates to integer coordinates, it will make two particles have
the same position with a high probability. Thus, we propose lattice coordinates
to avoid two particles having the same position. We partition the 3D simulation
space into small lattices (as exhibited in Fig. 2b), whose edge length is less than
the theoretical minimum of the distance between two particles. Thus, there is at
most one particle in a lattice, as shown in Fig. 2c, d. We can use the coordinates
(integers) of a lattice to approximately represent the coordinates of the particle in
the lattice. As a result, we transform the original floating-point coordinates into
the new lattice (integer) coordinates.

Step 2. Compute the integer coordinates
In this step, we compute the integer coordinate utilizing the lattice coordinates

obtained in Step 2. As shown in Fig. 1, the original coordinate of the central par-
ticle P0 is transformed into the lattice coordinate (x�

0
, y�

0
, z�

0
) after lattice partition.

Here, we assume that the maximal number of lattices for each dimension of the

1 3

FastNBL: fast neighbor lists establishment for molecular…

3D simulation space is 512. We use a segment of 9 binary bits to represent the
lattice coordinate for each dimension. In addition, a reserved bit, which is set to
“0”, is placed in the front of each segment. Thus, the three segments occupy total
30 bits. We use an integer value with int type, which occupies 32 bits, to contain
the three segments. The highest 2 bits of the int value are untapped and set to “0”.
We call this single int data “integer coordinate”. As shown in Fig. 1, z′

0
 is placed

from the first bit to the ninth bit of the integer coordinate; y′
0
 is placed from the

eleventh bit to the nineteenth bit using left shift and bitwise OR operations; x′
0
 is

placed from the twenty-first bit to the twenty-ninth bit using left shift and bitwise
OR operations. It is worth noting that the tenth bit, the twentieth bit and the thir-
tieth bit of the integer coordinate are the reserved bits. The integer coordinates
of P0 and P1 obtained after Step 3 are defined as CEint and CAint , respectively. If
any dimension of the 3D simulation space has more than 512 lattices, we will use
the data type with more bits to represent the integer coordinate, such as long long
with 64 bits.

Step 3. Execute bitwise OR operation with ����0

This step executes a bitwise OR operation with a preset value Mask0 on the
integer coordinates of P0 and P1 . The three reserved bits of Mask0 are “1” and the

Fig. 1 The steps of the FastNBL algorithm

 K. Li et al.

1 3

other bits are “0”. As a result, all three reserved bits of each integer coordinate
are set to “1”. Since we will calculate the difference for each segment between the
integer coordinates of P0 and P1 , this step guarantees that the difference is always
a positive value. For the central particle P0 and the neighbor particle P1 , the inte-
ger coordinates, whose reserved bits are set to “1”, are defined as CE′

int
 and CA′

int
 ,

respectively.
Step 4. Compute the differences
Step 5 in Fig. 1 exhibits the process of computing the differences between the

integer coordinates of P0 and P1 . Note that all the reserved bits of CE′
int

 and CA′
int

are set to “1”; on the contrary, all the reserved bits of CEint and CAint are “0”. We
subtract the integer coordinate CAint of P1 from CE′

int
 and obtain the first difference

value D0 . Similarly, D1 is obtained by subtracting the integer coordinate CEint of P0
from CA′

int
.

Step 5. Execute bitwise AND operation with ����1

Mask1 is an int value with 32 bits. The three reserved bits of Mask1 are set to
“0”. We use R to denote the cutoff radius. Except for the reserved bits, the lower
⌈log2(R + 1)⌉ bits of each segment of Mask1 are also set to “0”. In Fig. 1, we assume
the cutoff radius is equal to 3. Thus, the lower 2 bits of each segment of Mask1 are
set to “0”. All the other bits of Mask1 are set to “1”. When D0 is executed with Mask1
by the bitwise AND operation, we obtain a new value D′

0
 . In this way, the reserved

bits and the lower 2 bits of each segment of D′
0
 are set to “0”, and the other bits of

D′
0
 are the same as D0 . Similarly, we obtain D′

1
 when D0 is executed with Mask1 by

the bitwise AND operation. We will use D′
0
 and D′

1
 in the following steps to judge

whether the distance between the two particles is within the cutoff radius.
Step 6. Execute bitwise AND operation between D′

0
 and D′

1

For each segment of the three dimensions, if either D′
0
 or D′

1
 contains all “0” bits,

P1 is a neighbor of P0 . For other cases, P1 is not a neighbor of P0 . Firstly, we perform
a bitwise AND operation between D′

0
 and D′

1
 , and obtain a result Result0 . If Result0

is equal to zero, the algorithm continues to the next step for further judgment. How-
ever, if Result0 is larger than zero, P1 is not the neighbor of P0 and the algorithm
returns. For example, Result0 is larger than zero for Case1 in Fig. 3. For this case, P1
is not the neighbor of P0 . Result0 is equal to zero for the Case0 , Case2 and Case3 in
Fig. 3, which need further judgment.

Step 7. Left Shift and bitwise AND operations for D′
0
 and D′

1

(a) Original particles distri-
bution

(b) Lattice partition (c) A slice of lattices along
the horizontal direction

(d) Planform of the slice

Fig. 2 The lattice coordinates for particles

1 3

FastNBL: fast neighbor lists establishment for molecular…

“Result0 == 0 ” is not a sufficient condition to state that P1 is the neighbor of P0 .
We need further judgment. This is because even “ Result0 == 0 ” is satisfied, it is
not guaranteed that the segment of each dimension of either D′

0
 or D′

1
 is zero. For

instance, we will obtain all “0” bits for the segment of Y dimension in Result0 when
the bits from the third bit to the ninth bit of D′

0
 are exactly opposite to the corre-

sponding bits of D′
1
 ; however, neither the segment of Y dimension of D′

0
 nor the

segment of Y dimension of D′
1
 is equal to zero, such as Case2 and Case3 in Fig. 3. In

this step, we use two bitwise operations to determine that P1 is not the neighbor of
P0 for Case3 in Fig. 3. We carry out an 1-bit left shift operation on D′

0
 . The lowest

bit of D′
0
 is filled by “0” and the highest bit of D′

0
 is removed out. As a result, a new

shifted value Dleft is obtained. We perform an bitwise AND operation on Dleft and
D′

1
 , and obtain the result Result1 . If Result1 is equal to zero, such as Case0 and Case2

in Fig. 3, the algorithm continues to the next step for further judgment. However,
if Result1 is larger than zero, P1 is not the neighbor of P0 and the algorithm returns,
such as Case3 in Fig. 3.

Step 8. Right Shift and bitwise AND operations for D′
0
 and D′

1

Similarly, we use two bitwise operations to determine that P1 is not the neighbor
of P0 for Case2 in Fig. 3. We carry out an 1-bit right shift operation on D′

0
 . The high-

est bit of D′
0
 is filled by “0” and the lowest bit of D′

0
 is removed out. As a result, a

new shifted value Dright is obtained. We perform an bitwise AND operation on Dright
and D′

1
 , and obtain the result Result2 . If Result2 is equal to zero, P1 is the neighbor

of P0 and the algorithm returns, such as Case0 in Fig. 3. However, if Result2 is larger
than zero, P1 is not the neighbor of P0 and the algorithm returns, such as Case2 in
Fig. 3.

Fig. 3 Different cases to judge whether the distance between a pair of particles is within the cutoff radius
(equal to 3). Only the segment of Y dimension is shown. Suppose the segments of other dimensions are
the same as the Y dimension

 K. Li et al.

1 3

In fact, both D′
0
 and D′

1
 are obtained by bitwise AND operation for D0 and D1 with

Mask1 , respectively, in Step 5, and D0 and D1 are not used in the following steps
after that. We can notice that the candidate particle P1 is a neighbor of the central
particle P0 only if Result0 , Result1 and Result2 are all equal to zero.

The overhead is reduced dramatically using the FastNBL algorithm, since almost
all the operations are bitwise (except two subtraction operations). On the contrary,
both the Verlet table algorithm and the cell linked list algorithm adopt a traditional
distance calculation method, which has to perform costly floating-point operations.

3.2 The precise neighbor list

From the perspective of the FastNBL algorithm, one particle is a neighbor of
another particle if the distances in three dimensions between the two particles
are all within the cutoff radius. Actually, the FastNBL algorithm recognizes a
cubic neighbor region, whose side length is equal to two times the length of
the cutoff radius. On the contrary, the traditional method recognizes a spheri-
cal region, whose radius is equal to the length of the cutoff radius. The purple
sphere in Fig. 4a and the purple circle in Fig. 4b are the neighbor regions rec-
ognized by the traditional method, while the yellow cube in Fig. 4a and the yel-
low square in Fig. 4b are the neighbor regions recognized by FastNBL. We can
notice that the neighbor region recognized by FastNBL is a little larger than the
traditional method.

As shown in Fig. 4, FastNBL recognizes that P2 is a neighbor particle of P0 ,
but the traditional method not. Thus, we first use FastNBL to obtain an approxi-
mate neighbor list quickly. Then, we carry out the traditional distance calcu-
lation, i.e., Equation (1), on the particles in the approximate neighbor list to
further obtain a precise neighbor list. In this way, P2 is eliminated from the
approximate neighbor list of P0 . The number of particles in the approximate

(a) A 3D simulation space (b) A 2D planform of the sim-
ulation space

Fig. 4 The neighbor region comparison between the traditional distance calculation method and the
FastNBL algorithm

1 3

FastNBL: fast neighbor lists establishment for molecular…

neighbor list is much less than that in the whole simulation region. Therefore,
compared with traditional method which calculates the distances between the
central particle and all other particles in the simulation region, the overhead of
the precise neighbor list calculation carried out after FastNBL is much lower.

The whole workflow of FastNBL algorithm is shown in Algorithm 3. The
Nspace in line 7 is equal to N or 27 × Nc when it is applied to Verlet table algo-
rithm and cell linked algorithm, respectively. For-loop at line 1 is the step 1 in
FastNBL algorithm. Line 9 to line 13 correspond to step 3 to step 8. According
to the results by line 14, a neighbor judgment is made. Of course, if a higher
accuracy is required, traditional distance calculation will be performed after
FastNBL algorithm. When the traditional Verlet table algorithm is used, the
workflow of finishing a neighbor judgment requires at least 9 thousands clock
cycles roughly. However, since almost all operations are bitwise, only 15 clock
cycles are required by our FastNBL algorithm. Thus, a theoretical 600x speedup
is obtained if precise neighbor list is not required.

Algorithm 3 FastNBL algorithm
Require:

N : The total number of particles.
P0: The current central particle.
P1: The current candidate neighbor particle.

1: Build the lattice coordinates.
2: for i = 0 to N do
3: Compute an integer coordinate for each particle.
4: end for
5: for i = 0 to N do
6: Choose an integer coordinate CEint for P0.
7: for i = 0 to Nspace do
8: Choose an integer coordinate CAint for P1.
9: D

′
0 = [(CEint | Mask0)− CAint]&Mask1

10: D
′
1 = [(CAint | Mask0)− CEint]&Mask1

11: Result0 = D
′
0&D

′
1

12: Result1 = (D
′
0 � 1)&D

′
1

13: Result2 = (D
′
0 � 1)&D

′
1

14: if (Result0 == 0)&&(Result1 == 0)&&(Result2 == 0) then
15: if Precise neighbor list is required. then
16: Perform traditional distance calculation.
17: elseP1 is a neighbor for P0 by FastNBL.
18: end if
19: elseP1 is not a neighbor for P0.
20: end if
21: end for
22: end for

3.3 A case study for the FastNBL algorithm

In this section, we present a case study, as shown in Fig. 5, to further illustrate
how does FastNBL work and demonstrate the accuracy of the algorithm. We sup-
pose the cutoff radius is equal to 3 in this case. In Step 1, we transform the original

 K. Li et al.

1 3

floating-point coordinates into the lattice coordinates. The lattice coordinates of the
central particle P0 and the candidate particle P1 are (2, 3, 1) and (3, 2, 1), respec-
tively. In Step 2, we compute the integer coordinates, CEint and CAint , for P0 and P1
using left shift and bitwise OR operations, respectively. Note that the bit segments
for three dimensions are separated by the reserved bits. In Step 3, we set all three
reserved bits of CEint and CAint to “1”, and obtain CE′

int
 and CA′

int
 . In Step 4, we com-

pute two differences, D0 and D1 , where D0 = CE�
int

− CAint and D1 = CA�
int

− CEint .
In Step 5, we obtain D′

0
 and D′

1
 by setting the reserved bits and the lower 2 bits of

each segment of D0 and D1 to “0”. In Step 6, we obtain Result0 by conducting bit-
wise AND operation on D′

0
 and D′

1
 . As shown in Fig. 5, Result0 is equal to 0. In Step

7, we obtain Result1 if we right shift D′
0
 by 1 bit and then conduct bitwise AND

operation with D′
1
 . In Step 8, we obtain Result2 if we left shift D′

0
 by 1 bit and then

conduct bitwise AND operation with D′
1
 . Note that Result1 and Result2 are also equal

to 0. Thus, we recognize that P1 is a neighbor particle of P0 using FastNBL. The
distance between P0 and P1 , calculated by Eq. (1), is also less than the cutoff radius,
which demonstrates the correctness of FastNBL.

3.4 Periodic boundary condition

Periodic boundary conditions are a set of boundary conditions which are often cho-
sen for approximating a large or infinite system by using a small simulation region.

Fig. 5 A case study for the FastNBL algorithm. Suppose the cutoff radius is equal to 3

1 3

FastNBL: fast neighbor lists establishment for molecular…

The simulation space is extended in each dimension periodically [27]. As shown in
Fig. 6, the rightmost strip region along the X dimension will be the periodic bound-
ary for the leftmost region, and vice versa. In Fig. 6, suppose the edge length of sim-
ulation space is 512 and the cutoff radius is 3, and the lattice coordinates for P0 and
P1 are (1, 3, 2) and (511, 4, 1), respectively. After calculating the distance between
P0 and P1 using Eq. (1), we can see that P1 is not a neighbor particle of P0 . How-
ever, in the periodic boundary, the coordinates of P1 can be changed to (− 1, 4, 1) ,
and then the distance between P0 and P1 is less than 3. Thus, P1 is a neighbor par-
ticle of P0 under the periodic boundary condition. Both Verlet table algorithm and
cell linked algorithm need to adopt additional calculations to support the periodic
boundary condition, which will bring extra overhead inevitably [22].

On the contrary, the problem of periodic boundary condition can be solved by the
FastNBL algorithm efficiently. The FastNBL algorithm can deal with the periodic
boundary condition without extra operations. When the edge length of the simula-
tion space is a power-of-two, the periodic boundary condition is solved by FastNBL
the same as that shown in Fig. 1. When the edge length of the simulation space is a
non-power-of-two, more bits of Mask1 need to be set to “0”. For instance, suppose
the edge length of the simulation space is 18, which is a non-power-of-two, and the
cutoff radius is equal to 3. Apart from the reserved bits and the lowest 2 bits corre-
sponding to the length of the cutoff radius, the fifth bit in every segment of Mask1 is
also set to “0”. This Mask1 guarantees that if the distance between a particle pair for
one dimension is located in a interval [15, 17], one particle may still be the neighbor
of another particle. Here we use the example in Fig. 6 to show that FastNBL can
deal with the periodic boundary condition seamlessly. Recall that the lattice coor-
dinates of P0 and P1 are (1, 3, 2) and (511, 4, 1), respectively. Following the steps

Fig. 6 A 2D planform of
periodic boundary situation. The
edge length of simulation space
is 512

 K. Li et al.

1 3

shown in Fig. 1, we obtain the values of Result0 , Result1 and Result2 , which are all
equal to zero. Thus, P1 is a neighbor of P0 under the periodic boundary condition.

3.5 The SIMD optimization for FastNBL

Modern multi/many-core architectures [7, 15, 18] commonly support wide Single
Instruction Multiple Data (SIMD) instructions. Utilizing the SIMD instructions
efficiently is essential to achieve high performance on these architectures. We
use the bitwise SIMD instructions, if they are supported on a specific platform,
to exploit the instruction-level parallelism of FastNBL and further improve the
performance. In the process of SIMD optimization, the vector data type which
contains four integers is called int4. Similarly, int8 refers to the vector data type
which consists of eight integers. We put the integer coordinates of four or eight
candidate particles into a int4 or int8 vector. Then, the FastNBL algorithm deals
with four or eight candidate particles simultaneously when using the bitwise
SIMD instructions on the int4 or int8 vector. At last, we obtain the vector values
of Result0 , Result1 , and Result2 . We carry out SIMD OR instructions on Result0 ,
Result1 , and Result2 , and obtain a vector value Resultfinal . If all the four or eight
scalar values in Resultfinal are larger than zero, all the four or eight candidate parti-
cles are not the neighbor particles of the central particle. Otherwise, if any scalar
in Resultfinal is equal to zero, the corresponding candidate particle is the neighbor
particle of the central particle.

4 Evaluation

4.1 Experimental environment introduction

The experiments are conducted on different architectures, including x86 [18],
ARMv8 [7], and Sunway many-core architectures [15]. For the x86 architecture,
we use Intel Xeon E5-2670 v3 as the experimental platform. It contains 2 proces-
sors connected by QPI, and each processor has 12 cores sharing a 30 MB unified
L3 cache. Thus, there are total 24 cores with a frequency of 2.30 GHz on Xeon
E5-2670. It supports Intel AVX2 vector instructions, the register width of which is
256 bits.

For the ARMv8 architecture, we use ARM Cortex-A57 as the experimental plat-
form. The ARM Cortex-A57 is a microarchitecture implementing the ARMv8-A
64-bit instruction set designed by ARM [8]. It contains 16 cores with a frequency
of 2.1 GHz. Each core has a 48 KB L1 instruction cache and a 32 KB L1 data
cache [12]. It supports NEON vector instructions, the register width of which is 128
bits.

We also conduct the experiments on the Sunway many-core architecture, i.e.,
SW26010 processor. The general architecture of SW26010 is shown in Fig. 7. It

1 3

FastNBL: fast neighbor lists establishment for molecular…

contains four core-groups (CGs). Each CG includes one management process-
ing element (MPE), one computing processing element (CPE) cluster with eight
by eight CPEs, and one memory controller (MC). The processor connects to other
outside devices through a system interface (SI). For convenience, we call MPE as
master core and call CPE as slave core in this paper. The master core has a 32 KB
L1 instruction cache, a 32 KB L1 data cache, and a unified 256 KB L2 cache. Each
slave core has a 16 KB L1 instruction cache, and a 64 KB local store (user-con-
trolled scratch pad memory) [33]. Both the master core and the slave cores work
at 1.45 GHz and support 256-bit vector instructions. However, it does not support
bitwise vector instructions.

We use the implementation of the Verlet table algorithm, which adopts the tradi-
tional distance calculation method, as our baseline. The baseline is named as Naive
in the following discussion. We use FastNBL to denote the fast neighbor lists estab-
lishment algorithm proposed in this paper. We use FastNBL (SIMD 4) to denote
the FastNBL algorithm using int4 SIMD instructions. We use FastNBL (SIMD 8)
to denote the FastNBL algorithm using int8 SIMD instructions. The size of the 3D
simulation space is 512 × 512 × 512 . The simulation space contains total 4096 par-
ticles. The cutoff radius is set to 3. All the evaluations are run for 1024 times and we
present the average runtime in the following figures.

Fig. 7 Sunway many-core architecture

 K. Li et al.

1 3

4.2 Performance evaluation on different architectures

The performance comparison on Intel Xeon E5-2670 v3 is shown in Fig. 8. To
utilize multiple cores on the processor, we simply use the OpenMP [11] compiler
directives to partition the workload and fork multiple threads. Compared with the
Naive algorithm, the FastNBL algorithm achieves on average 1.79x speedup for the
core numbers from 1 to 24, which illustrates that the overhead of the neighbor lists
establishment is significantly decreased by FastNBL. In addition, bitwise SIMD
instructions are supported on Intel Xeon E5-2670 v3. Since the program control
is predictable and the application for neighbor list establishment is massively data
parallel, SIMD is a good option to exploit the parallelism. However, if the Naive
algorithm is performed by SIMD operations directly, the complex multiplication
and square root operations bring extra intermediate results and redundant SIMD
instructions, which is much more programmer-unfriendly. Even though a modern
compiler can and will implement some complex calculations using a series of bit-
wise instructions, the Naïve algorithm cannot be optimized by compiler thoroughly.
The proposed FastNBL algorithm is designed for solving this problem. Since we
have achieved establishing neighbor list by several bitwise operations, no redundant
bitwise optimizations are required by compiler and the algorithm is implemented
with SIMD instructions efficiently. After using the int4 and int8 SIMD instructions,
FastNBL (SIMD 4) and FastNBL (SIMD 8) further improve the performance to
some extent. Compared with the Naive algorithm, FastNBL (SIMD 4) and FastNBL
(SIMD 8) achieve on average 2.31x speedup and 2.64x speedup, respectively. This
demonstrates that FastNBL is SIMD-friendly and can fully exploit the instruction-
level parallelism. FastNBL (SIMD 8) performs better than FastNBL (SIMD 4). This
is because the SIMD instructions on Xeon E5-2670 have a 256-bit register width,
and the int8 data type can fully utilize the 256-bit registers. Finally, the best perfor-
mance is achieved when FastNBL (SIMD 8) running on all 24 cores.

The performance comparison on ARM Cortex-A57 is shown in Fig. 9. Compared
with the Naive algorithm, the FastNBL algorithm achieves on average 3.43x speedup

Fig. 8 The runtime comparison on Intel Xeon E5-2670 v3, using up to 24 cores

1 3

FastNBL: fast neighbor lists establishment for molecular…

for the core numbers from 1 to 16. Compared with the Naive algorithm, FastNBL
(SIMD 4) and FastNBL (SIMD 8) achieve on average 13.37x speedup and 14.43x
speedup, respectively. The SIMD optimization on ARM Cortex-A57 achieves sig-
nificant performance improvement compared with the scalar implementation of
FastNBL. However, compared with FastNBL (SIMD 4), FastNBL (SIMD 8) almost
has no performance advantage. This is because the register width of the NEON vec-
tor instructions is 128 bits, and FastNBL (SIMD 4) has already fully utilized the 128-
bit registers. Thus, using int8 SIMD instructions brings no more speedup compared
with int4.

The performance comparison on Sunway many-core processor is shown in
Fig. 10. To utilize multiple slave cores on SW26010, we use the Sunway Athread
library (similar to Pthread) to fork multiple slave threads. Compared with the Naive
algorithm, the FastNBL algorithm achieves on average 4.03x speedup for the core
numbers from 1 to 64. Since SW26010 many-core processor does not support bit-
wise vector instructions, only the runtime of the scalar version of FastNBL is pre-
sented in Fig. 10. Overall, FastNBL and its SIMD versions significantly outperform
the Naive algorithm on different multi/many-core architectures, which demonstrates
the performance portability of FastNBL.

The runtime comparison between different algorithms when using only one
core for each architecture is shown in Table 1. We can see that the x86 architecture
achieves good performance for all four algorithms. Meanwhile, the SIMD optimiza-
tion effect for FastNBL on the x86 architecture is not significant. This is probably
because the compiler has done the automatic vectorization for the x86 architecture.
The Sunway slave core achieves the worst performance among all different proces-
sors/cores. This is because the local store of each slave core cannot hold the infor-
mation of all the particles, which has to be stored in the main memory. It would
cause frequent data transfer between the main memory and the local store during the
calculation.

Fig. 9 The runtime comparison on ARM Cortex-A57, using up to 16 cores

 K. Li et al.

1 3

5 Conclusion

Neighbor lists establishment is an essential module in many molecular dynamics
simulations. The main runtime overhead of the neighbor lists establishment comes
from the distance calculation for all the particle pairs, which involves costly floating-
point operations. We propose FastNBL to establish the neighbor lists mainly using
the bitwise operations. FastNBL transforms the three-dimensional coordinates of a
particle into a single integer value, based on which a bunch of bitwise operations and
two subtraction operations are applied to judge whether the distance between a pair
of particles is within the cutoff radius. We demonstrate that our algorithm can deal
with the periodic boundary seamlessly. SIMD instructions are used to exploit the
instruction-level parallelism of FastNBL. Experimental results show that FastNBL
significantly outperforms the traditional method on Intel Xeon E5-2670, ARM v8,
and Sunway many-core architectures.

Actually, the FastNBL algorithm recognizes a cubic neighbor region, whose side
length is equal to two times the length of the cutoff radius. However, the traditional
method recognizes a spherical region, whose radius is equal to the length of the
cutoff radius. Thus, the neighbor region recognized by FastNBL is a little larger
than the traditional method. For the future work, we would manage to recognize a

Fig. 10 The runtime comparison on SW26010 many-core processor, using up to 64 slave cores

Table 1 The runtime (s) comparison on different architectures

Only one core is used for each architecture

x86 ARMv8 Sunway master Sunway slave

Naive 0.5445 3.0264 1.0978 6.6730
FastNBL 0.3013 0.8823 0.2632 2.4479
FastNBL (SIMD 4) 0.2153 0.2255 – –
FastNBL (SIMD 8) 0.2064 0.2089 – –

1 3

FastNBL: fast neighbor lists establishment for molecular…

more accurate region by FastNBL algorithm, then embed it into molecular dynam-
ics applications, and further optimize the performance of the molecular dynamics
simulation process on large-scale supercomputers, such as Sunway TaihuLight or
Tianhe-2.

Acknowledgements This work was supported by National Natural Science Foundation of China
under Grant Nos. 61502450 and 61432018; National Key R&D Program of China under Grant Nos.
2017YFB0202302 and 2016YFB0200800; State Key Laboratory of Computer Architecture Foundation
under Grant No. CARCH3504.

References

 1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high
performance molecular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX 1:19–25

 2. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford
 3. Allen MP et al (2004) Introduction to molecular dynamics simulation. Comput Soft Matter Synth

Polym proteins 23:1–28
 4. Andersen HC (1983) Rattle: a velocity version of the shake algorithm for molecular dynamics cal-

culations. J Comput Phys 52(1):24–34
 5. Anderson JA, Glotzer SC (2013) The development and expansion of hoomd-blue through six years

of gpu proliferation. arXiv :1308.5587
 6. Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dynamics simulations

fully implemented on graphics processing units. J Comput Phys 227(10):5342–5359
 7. ARM (2015) ARM Cortex-A Series: Programmer’s Guide for ARMv8-A
 8. ARM (2017) ARM architecture reference manual. ARMv8, for ARMv8-A architecture profile
 9. Blumenthal LM (1970) Theory and applications of distance geometry. Chelsea, New York
 10. Brown WM, Wang P, Plimpton SJ, Tharrington AN (2011) Implementing molecular dynamics on

hybrid high performance computers-short range forces. Comput Phys Commun 182(4):898–911.
https ://doi.org/10.1016/j.cpc.2010.12.021

 11. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
IEEE Comput Sci Eng 5(1):46–55

 12. Flur S, Gray KE, Pulte C, Sarkar S, Sezgin A, Maranget L, Deacon W, Sewell P (2016) Modelling
the ARMv8 architecture, operationally: concurrency and ISA. In: ACM SIGPLAN notices, vol 51.
ACM, pp 608–621

 13. Fog A (2008) Optimizing subroutines in assembly language: an optimization guide for x86 plat-
forms. Copenhagen University College of Engineering

 14. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol
1. Elsevier, London

 15. Fu H, Liao J, Yang J, Wang L, Song Z, Huang X, Yang C, Xue W, Liu F, Qiao F et al (2016) The
sunway taihulight supercomputer: system and applications. Sci China Inf Sci 59(7):072001

 16. Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, Glotzer SC (2015)
Strong scaling of general-purpose molecular dynamics simulations on gpus. Comput Phys Commun
192:97–107

 17. Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, London
 18. Intel (2018) Intel® 64 and IA-32 architectures software developers manual. Volume 3B: System

programming Guide, Part 2
 19. Jiang W, Hardy DJ, Phillips JC, MacKerell AD Jr, Schulten K, Roux B (2010) High-performance

scalable molecular dynamics simulations of a polarizable force field based on classical drude oscil-
lators in namd. J Phys Chem Lett 2(2):87–92

 20. Liu W, Schmidt B, Voss G, Müller-Wittig W (2007) Molecular dynamics simulations on commod-
ity GPUs with CUDA. In: International Conference on High-Performance Computing. Springer, pp
185–196

http://arxiv.org/abs/1308.5587
https://doi.org/10.1016/j.cpc.2010.12.021

 K. Li et al.

1 3

 21. Mattson W, Rice BM (1999) Near-neighbor calculations using a modified cell-linked list method.
Comput Phys Commun 119(2–3):135–148

 22. Niethammer C, Becker S, Bernreuther M, Buchholz M, Eckhardt W, Heinecke A, Werth S, Bun-
gartz HJ, Glass CW, Hasse H et al (2014) ls1 mardyn: the massively parallel molecular dynamics
code for large systems. J Chem Theory Computation 10(10):4455–4464

 23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys
117(1):1–19. https ://doi.org/10.1006/jcph.1995.1039

 24. Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale atomic/molecular massively par-
allel simulator. Sandia Natl Lab 18:43–43

 25. Potter D (1973) Computational physics. Wiley
 26. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM,

Van Der Spoel D et al (2013) Gromacs 4.5: a high-throughput and highly parallel open source
molecular simulation toolkit. Bioinformatics 29(7):845–854

 27. Rapaport DC, Rapaport DCR (2004) The art of molecular dynamics simulation. Cambridge Univer-
sity Press, Cambridge

 28. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating
molecular modeling applications with graphics processors. J Comput Chem 28(16):2618–2640

 29. Tang YH, Karniadakis GE (2014) Accelerating dissipative particle dynamics simulations on gpus:
algorithms, numerics and applications. Comput Phys Commun 185(11):2809–2822. https ://doi.
org/10.1016/j.cpc.2014.06.015

 30. Trott CR (2011) Lammpscuda—a new gpu accelerated molecular dynamics simulations package
and its application to ion-conducting glasses. Ph.d. thesis, Universitätsbibliothek Ilmenau

 31. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J
Chem Phys 97(3):1990–2001

 32. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Len-
nard–Jones molecules. Phys Rev 159(1):98

 33. Wang X, Xue W, Liu W, Wu L (2018) swSpTRSV: a fast sparse triangular solve with sparse level
tile layout on sunway architectures. In: Proceedings of the 23rd ACM SIGPLAN symposium on
principles and practice of parallel programming. ACM, pp 338–353

 34. Xing HJ, Khan MKR, Alnatsheh RH, Chirala RC, Bhattacharjee S (2012) Method and apparatus for
neighbor list updates. US Patent 8,144,662

 35. Yao Z, Wang JS, Liu GR, Cheng M (2004) Improved neighbor list algorithm in molecular simula-
tions using cell decomposition and data sorting method. Comput Phys Commun 161(1–2):27–35

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2014.06.015
https://doi.org/10.1016/j.cpc.2014.06.015

	FastNBL: fast neighbor lists establishment for molecular dynamics simulation based on bitwise operations
	Abstract
	1 Introduction and related work
	2 Motivation
	2.1 The verlet table and the cell linked list algorithms
	2.2 Performance problems in the existing algorithms

	3 Fast neighbor lists establishment based on the bitwise operations
	3.1 The key steps for the FastNBL algorithm
	3.2 The precise neighbor list
	3.3 A case study for the FastNBL algorithm
	3.4 Periodic boundary condition
	3.5 The SIMD optimization for FastNBL

	4 Evaluation
	4.1 Experimental environment introduction
	4.2 Performance evaluation on different architectures

	5 Conclusion
	Acknowledgements
	References

